Multiple Conclusion Linear Logic: Cut Elimination and More

  • Harley EadesIII
  • Valeria de Paiva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9537)


Full Intuitionistic Linear Logic (FILL) was first introduced by Hyland and de Paiva, and went against current beliefs that it was not possible to incorporate all of the linear connectives, e.g. tensor, par, and implication, into an intuitionistic linear logic. It was shown that their formalization of FILL did not enjoy cut-elimination by Bierman, but Bellin proposed a change to the definition of FILL in the hope to regain cut-elimination. In this note we adopt Bellin’s proposed change and give a direct proof of cut-elimination. Then we show that a categorical model of FILL in the basic dialectica category is also a LNL model of Benton and a full tensor model of Melliès’ and Tabareau’s tensorial logic. Lastly, we give a double-negation translation of linear logic into FILL that explicitly uses par in addition to tensor.


Full intuitionistic linear logic Classical linear logic Dialectica category Cut-elimination Tensorial logic Linear/non-linear models Categorical model Proof theory Par 


  1. 1.
    Bellin, G.: Subnets of proof-nets in multiplicative linear logic with MIX. J. Math. Struct. in CS. 7, 663–669 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benton, P.N.: A mixed linear and non-linear logic: Proofs, terms and models (preliminary report). Technical Report, UCAM-CL-TR-352, University of Cambridge Computer Laboratory (1994)Google Scholar
  3. 3.
    Bierman, G.M.: On Intuitionistic Linear Logic. Ph.D. thesis, Wolfson College, Cambridge (1993)Google Scholar
  4. 4.
    Bierman, G.M.: A note on full intuitionistic linear logic. J. Ann. Pure Appl. Logic 79(3), 281–287 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Braüner, T., de Paiva, V.: A formulation of linear logic based on dependency-relations. In: Nielsen, M., Thomas, W. (eds.) CSL 1998, LNCS, vol. 1414, pp. 129–148. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Clouston, R., Dawson, J., Gore, R., Tiu, A.: Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic - extended version. CoRR, abs/1307.0289 (2013)
  7. 7.
    Cockett, J.R.B., Seely, R.A.G.: Weakly distributive categories. J. Pure Appl. Algebra 114(2), 133–173 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    de Paiva, V.: The Dialectica Categories. Ph.D. thesis, University of Cambridge (1988)Google Scholar
  9. 9.
    de Paiva, V.: Dialectica categories. In: Gray, J., Scedrov, A. (eds.) CSL 1989, AMS, vol. 92, pp. 47–62 (1989)Google Scholar
  10. 10.
    de Paiva, V.: Abstract: Lorenzen games for full intuitionistic linear logic. In: 14th International Congress of Logic, Methodology and Philosophy of Science (CLMPS) (2011)Google Scholar
  11. 11.
    de Paiva, V., Carlos, L.P.: A short note on intuitionistic propositional logic with multiple conclusions. MANUSCRITO - Rev. Int. Fil. 28(2), 317–329 (2005)MathSciNetGoogle Scholar
  12. 12.
    Dragalin, A.G.: Mathematical Intuitionism. Introduction to Proof Theory, Translations of Mathematical Monographs. 67, AMS (1988)Google Scholar
  13. 13.
    Hyland, M., de Paiva, V.: Full intuitionistic linear logic (extended abstract). J. Ann. Pure Appl. Logic 64(3), 273–291 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eades III, H., de Paiva, V.: Compainion report: multiple conclusion intuitionistic linear logic and cut elimination.
  15. 15.
    Keiff, L.: Dialogical logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Summer 2011 edition (2011)Google Scholar
  16. 16.
    Maehara, S.: Eine darstellung der intuitionistischen logik in der klassischen. J. Nagoya Math. 7, 45–64 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Melliés, P.-A.: Categorical semantics of linear logic. In: Curien, P.-L., Herbelin, H., Krivine, J.-L., Melliés, P.-A. (eds.) Interactive Models of Computation and Program Behaviour, Panoramas et Synthéses 27, Société Mathématique de France (2009)Google Scholar
  18. 18.
    Melliés, P., Tabareau, N.: Linear continuations and duality. Technical report, Université Paris VII (2008)Google Scholar
  19. 19.
    Melliès, P., Tabareau, N.: Resource modalities in tensor logic. J. Ann. Pure Appl. Logic 161(5), 632–653 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rahman, S.: Un desafio para las teorias cognitivas de la competencia log- ICA: los fundamentos pragmaticos de la semantica de la logica linear. Manuscrito 25(2), 381–432 (2002)Google Scholar
  21. 21.
    Rahman, S., Keiff, L.: On how to be a dialogician. In: Vanderveken, D. (ed.) Logic, Thought and Action. Logic, Epistemology, and the Unity of Science, vol. 2, pp. 359–408. Springer, Netherlands (2005)CrossRefGoogle Scholar
  22. 22.
    Schellinx, H.: Some syntactical observations on linear logic. J. Logic Comput. 1(4), 537–559 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Seely, R.: Linear logic, *-autonomous categories and cofree coalgebras. CSL, AMS 92, 371–381 (1989)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Takeuti, G.: Proof Theory. North-Holland, Amsterdam (1975)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Computer and Information SciencesGeorgia Regents UniversityAugustaGeorgia
  2. 2.Nuance CommunicationsSunnyvaleUSA

Personalised recommendations