International Symposium on Logical Foundations of Computer Science

Logical Foundations of Computer Science pp 174-186 | Cite as

Probabilistic Justification Logic

  • Ioannis Kokkinis
  • Zoran Ognjanović
  • Thomas Studer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9537)

Abstract

We present a probabilistic justification logic, \(\mathsf {PPJ} \), to study rational belief, degrees of belief and justifications. We establish soundness and completeness for \(\mathsf {PPJ} \) and show that its satisfiability problem is decidable. In the last part we use \(\mathsf {PPJ} \) to provide a solution to the lottery paradox.

Keywords

Justification logic Probabilistic logic Strong completeness Decidability Lottery paradox 

References

  1. 1.
    Artemov, S.N.: Operational modal logic. Technical report MSI 95–29, Cornell University, December 1995Google Scholar
  2. 2.
    Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symbolic Logic 7(1), 1–36 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Artemov, S.N.: The logic of justification. Rev. Symbolic Logic 1(4), 477–513 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Artemov, S.N.: The ontology of justifications in the logical setting. Studia Logica 100(1–2), 17–30 (2012). published online February 2012MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bucheli, S., Kuznets, R., Studer, T.: Partial realization in dynamic justification logic. In: Beklemishev, L.D., de Queiroz, R. (eds.) WoLLIC 2011. LNCS, vol. 6642, pp. 35–51. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  6. 6.
    Fan, T., Liau, C.: A logic for reasoning about justified uncertain beliefs. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the IJCAI 2015. pp. 2948–2954. AAAI Press (2015)Google Scholar
  7. 7.
    Fitting, M.: The logic of proofs, semantically. Ann. Pure Appl. Logic 132(1), 1–25 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Foley, R.: Beliefs, degrees of belief, and the lockean thesis. In: Huber, F., Schmidt-Petri, C. (eds.) Degrees of Belief, pp. 37–47. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Ghari, M.: Justification logics in a fuzzy setting. ArXiv e-prints (Jul 2014)Google Scholar
  10. 10.
    Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards probabilistic justification logic. Logic J. IGPL 23(4), 662–687 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kuznets, R.: On the complexity of explicit modal logics. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 371–383. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) AiML 9, pp. 437–458. College Publications (2012)Google Scholar
  14. 14.
    Kuznets, R., Studer, T.: Update as evidence: belief expansion. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 266–279. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Kuznets, R., Studer, T.: Weak arithmetical interpretations for the logic of proofs. Logic Journal of IGPL (to appear)Google Scholar
  16. 16.
    Kyburg, H.E.J.: Probability and the Logic of Rational Belief. Wesleyan University Press, Middletown (1961)Google Scholar
  17. 17.
    Leitgeb, H.: The stability theory of belief. Philos. Rev. 123(2), 131–171 (2014)CrossRefGoogle Scholar
  18. 18.
    Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. International Series in Operations Research and Management Science, vol. 116. Springer, Heidelberg (2008) MATHGoogle Scholar
  19. 19.
    Milnikel, R.S.: The logic of uncertain justifications. Ann. Pure Appl. Logic 165(1), 305–315 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  21. 21.
    Ognjanović, Z., Rašković, M.: Some first order probability logics. Theoret. Comput. Sci. 247, 191–212 (2000)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ognjanović, Z., Rašković, M., Marković, Z.: Probability logics. Zbornik radova, subseries. Logic Comput. Sci. 12(20), 35–111 (2009)MATHGoogle Scholar
  23. 23.
    Rašković, M., Ognjanović, Z.: A first order probability logic, \(LP_Q\). Puplications de L’Institut Mathèmatique 65(79), 1–7 (1999)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ioannis Kokkinis
    • 1
  • Zoran Ognjanović
    • 2
  • Thomas Studer
    • 1
  1. 1.Institute of Computer ScienceUniversity of BernBernSwitzerland
  2. 2.Mathematical Institute SANUBelgradeSerbia

Personalised recommendations