International Symposium on Logical Foundations of Computer Science

Logical Foundations of Computer Science pp 1-13 | Cite as

Modal Logics with Hard Diamond-Free Fragments

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9537)

Abstract

We investigate the complexity of modal satisfiability for certain combinations of modal logics. In particular we examine four examples of multimodal logics with dependencies and demonstrate that even if we restrict our inputs to diamond-free formulas (in negation normal form), these logics still have a high complexity. This result illustrates that having D as one or more of the combined logics, as well as the interdependencies among logics can be important sources of complexity even in the absence of diamonds and even when at the same time in our formulas we allow only one propositional variable. We then further investigate and characterize the complexity of the diamond-free, 1-variable fragments of multimodal logics in a general setting.

Keywords

Modal logic Satisfiability Computational complexity Diamond-free fragments Multi-modal Lower bounds 

References

  1. 1.
    Achilleos, A.: Modal Logics with Hard Diamond-free Fragments. CoRR abs/1401.5846 (2014)
  2. 2.
    Achilleos, A.: Interactions and Complexity in Multi-Agent Justification Logic. Ph.D. thesis, The City University of New York (2015)Google Scholar
  3. 3.
    Artemov, S.: The logic of justification. Rev. Symbolic Logic 1(4), 477–513 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chagrov, A.V., Rybakov, M.N.: How many variables does one need to prove PSPACE-hardness of modal logics. In: Advances in Modal Logic, pp. 71–82 (2002)Google Scholar
  5. 5.
    Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.): Handbook of Tableau Methods. Springer, Heidelberg (1999) Google Scholar
  6. 6.
    Demri, S.: Complexity of simple dependent bimodal logics. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 190–204. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  7. 7.
    Demri, S.: The complexity of regularity in grammar logics and related modal logics. J. Logic Comput. 11(6), 933–960 (2001). http://logcom.oxfordjournals.org/content/11/6/933.abstract MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Demri, S., De Nivelle, H.: Deciding regular grammar logics with converse through first-order logic. J. Logic Lang. Inform. 14(3), 289–329 (2005). http://dx.doi.org/10.1007/s10849-005-5788-9 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M. (eds.): Many-Dimensional Modal Logics Theory and Applications. Studies in Logic and the Foundations of Mathematics, vol. 148. Elsevier, North Holland (2003) MATHGoogle Scholar
  10. 10.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)MATHGoogle Scholar
  11. 11.
    Halpern, J.Y.: The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artif. Intell. 75, 361–372 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hemaspaandra, E.: The complexity of poor Man’s logic. J. Logic Comput. 11(4), 609–622 (2001)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hemaspaandra, E., Schnoor, H., Schnoor, I.: Generalized modal satisfiability. J. Comput. Syst. Sci. 76(7), 561–578 (2010). http://www.sciencedirect.com/science/article/pii/S0022000009001007 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kurucz, A.: Combining modal logics. Stud. Logic Pract. Reasoning 3, 869–924 (2007)CrossRefGoogle Scholar
  16. 16.
    Kuznets, R.: Complexity Issues in Justification Logic. Ph.D. thesis, CUNY Graduate Center, May 2008Google Scholar
  17. 17.
    Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977). http://link.aip.org/link/?SMJ/6/467/1 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Marx, M., Venema, Y.: Multi-dimensional Modal Logic. Springer, Heidelberg (1997)CrossRefMATHGoogle Scholar
  19. 19.
    Nguyen, L.A., Szałas, A.: EXPTIME tableau decision procedures for regular grammar logics with converse. Stud. Logic. 98(3), 387–428 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Spaan, E.: Complexity of Modal Logics. Ph.D. thesis, University of Amsterdam (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The Graduate Center of The City University of New YorkNew YorkUSA

Personalised recommendations