A Fast 3D Indoor-Localization Approach Based on Video Queries

  • Guoyu LuEmail author
  • Yan Yan
  • Abhishek Kolagunda
  • Chandra Kambhamettu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9517)


Image-based localization systems are typically used in outdoor environments, as high localization accuracy can be achieved particularly near tall buildings where the GPS signal is weak. Weak GPS signal is also a critical issue for indoor environments. In this paper, we introduce a novel fast 3D Structure-from-Motion (SfM) model based indoor localization approach using videos as queries. Different from an outdoor environment, the captured images in an indoor environment usually contain people, which often leads to an incorrect camera pose estimation. In our approach, we segment out people in the videos by means of an optical flow technique. This way, we filter people in video and complete the captured video for localization. A graph matching based verification is adopted to enhance both the number of images that are registered and the camera pose estimation. Furthermore, we propose an initial correspondence selection method based on local feature ratio test instead of traditional RANSAC which leads to a much faster image registration speed. The extensive experimental results show that our proposed approach has multiple advantages over existing indoor localization systems in terms of accuracy and speed.


  1. 1.
    Cheng, Z.Q., Chen, Y., Martin, R.R., Lai, Y.K., Wang, A.: Supermatching: feature matching using supersymmetric geometric constraints. TVCG 19(11), 1885–1894 (2013)Google Scholar
  2. 2.
    Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous optimization for large-scale structure from motion. In: CVPR, pp. 3001–3008 (2011)Google Scholar
  3. 3.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004). ISBN: 0521540518zbMATHCrossRefGoogle Scholar
  5. 5.
    Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From structure-from-motion point clouds to fast location recognition. In: CVPR, pp. 2599–2606 (2009)Google Scholar
  6. 6.
    Kawaji, H., Hatada, K., Yamasaki, T., Aizawa, K.: Image-based indoor positioning system: fast image matching using omnidirectional panoramic images. In: ACM International Workshop on Multimodal Pervasive Video Analysis, pp. 1–4 (2010)Google Scholar
  7. 7.
    Kosecka, J., Zhou, L., Barber, P., Duric, Z.: Qualitative image based localization in indoors environments. In: CVPR, vol. 2, pp. II-3 (2003)Google Scholar
  8. 8.
    Li, X., Wang, J.: Image matching techniques for vision-based indoor navigation systems: performance analysis for 3D map based approach. In: IPIN, pp. 1–8 (2012)Google Scholar
  9. 9.
    Li, Y., Snavely, N., Huttenlocher, D.P.: Location recognition using prioritized feature matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 791–804. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Liu, J., Chen, Y., Zhang, Y.: Transfer regression model for indoor 3D location estimation. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, Y.-P.P. (eds.) MMM 2010. LNCS, vol. 5916, pp. 603–613. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. 11.
    Lu, G., Sebe, N., Xu, C., Kambhamettu, C.: Memory efficient large-scale image-based localization. Multimedia Tools Appl. 74(2), 479–503 (2015)CrossRefGoogle Scholar
  12. 12.
    Lu, G., Yan, Y., Li, R., Song, J., Sebe, N., Kambhamettu, C.: Localize me anywhere, anytime: a multi-task point-retrieval approach. In: ICCV (2015)Google Scholar
  13. 13.
    Lu, G., Yan, Y., Ren, L., Saponaro, P., Sebe, N., Kambhamettu, C.: Where am I in the dark: exploring active transfer learning on the use of indoor localization based on thermal imaging. Neurocomputing (2015)Google Scholar
  14. 14.
    Lu, G., Yan, Y., Sebe, N., Kambhamettu, C.: Knowing where i am: exploiting multi-task learning for multi-view indoor image-based localization. In: BMVC (2014)Google Scholar
  15. 15.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISAPP, pp. 331–340 (2009)Google Scholar
  16. 16.
    Nie, L., Yan, S., Wang, M., Hong, R., Chua, T.S.: Harvesting visual concepts for image search with complex queries. In: ACM MM, pp. 59–68 (2012)Google Scholar
  17. 17.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR, pp. 2161–2168 (2006)Google Scholar
  18. 18.
    Ravi, N., Shankar, P., Frankel, A., Elgammal, A., Iftode, L.: Indoor localization using camera phones. In: IEEE WMCSA, pp. 49–49 (2006)Google Scholar
  19. 19.
    Robertson, D., Cipolla, R.: An image-based system for urban navigation. In: BMVC, pp. 819–828 (2004)Google Scholar
  20. 20.
    Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2d-to-3d matching. In: ICCV, pp. 667–674 (2011)Google Scholar
  21. 21.
    Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: CVPR, pp. 1–7, June 2007Google Scholar
  22. 22.
    Xiao, J., Chen, J., Yeung, D.-Y., Quan, L.: Structuring visual words in 3D for arbitrary-view object localization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 725–737. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  23. 23.
    Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: CVPR, pp. 1107–1114 (2013)Google Scholar
  24. 24.
    Yan, Y., Ricci, E., Liu, G., Sebe, N.: Egocentric daily activity recognition via multitask clustering. TIP 24(10), 2984–2995 (2015)MathSciNetGoogle Scholar
  25. 25.
    Yan, Y., Ricci, E., Subramanian, R., Lanz, O., Sebe, N.: No matter where you are: flexible graph-guided multi-task learning for multi-view head pose classification under target motion. In: ICCV, pp. 1177–1184 (2013)Google Scholar
  26. 26.
    Zhang, L., Yang, Y., Zimmermann, R.: Fine-grained image categorization by localizing tinyobject parts from unannotated images. In: ICMR, pp. 107–114 (2015)Google Scholar
  27. 27.
    Zheng, Y., Kambhamettu, C., Yu, J., Bauer, T., Steiner, K.: Fuzzymatte: a computationally efficient scheme for interactive matting. In: CVPR, pp. 1–8 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Guoyu Lu
    • 1
    Email author
  • Yan Yan
    • 2
  • Abhishek Kolagunda
    • 1
  • Chandra Kambhamettu
    • 1
  1. 1.Department of Computer and Information SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of Information Engineering and Computer ScienceUniversity of TrentoTrentoItaly

Personalised recommendations