Automatic Scribble Simulation for Interactive Image Segmentation Evaluation

  • Bingjie Jiang
  • Tongwei Ren
  • Jia Bei
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9516)


To provide comprehensive evaluation of interactive image segmentation algorithms, we propose an automatic scribble simulation approach. We first analyze the variety of scribbles labelled by different users and its influence on segmentation result. Then, we describe the consistency and inconsistency of scribbles with normal distribution on superpixel level and superpixel group level, and analyze the effect of connection in scribble for interactive segmentation evaluation. Based on the above analysis, we simulate scribbles on foreground and background respectively by randomly selecting superpixel groups and superpixels with the previously determined coverage values. The experimental results show that the scribbles simulated by the proposed approach can obtain similar evaluation results to manually labelled scribbles and avoid serious deviation in precision and recall evaluation.


Scribble simulation Interactive image segmentation evaluation Scribble variety Superpixel group 



This work is supported by the National Science Foundation of China (61321491, 61202320), Research Project of Excellent State Key Laboratory (61223003), National Undergraduate Innovation Project (G1410284075) and Collaborative Innovation Center of Novel Software Technology and Industrialization.


  1. 1.
    Bao, B.-K., Liu, G., Hong, R., Yan, S., Changsheng, X.: General subspace learning with corrupted training data via graph embedding. IEEE TIP 22(11), 4380–4393 (2013)Google Scholar
  2. 2.
    Xu, X., Geng, W., Ju, R., Yang, Y., Ren, T., Wu, G.: OBSIR: object-based stereo image retrieval. In: IEEE ICME, pp. 1–6 (2014)Google Scholar
  3. 3.
    Sang, J., Changsheng, X., Liu, J.: User-aware image tag refinement via ternary semantic analysis. IEEE TMM 14(3–2), 883–895 (2012)Google Scholar
  4. 4.
    Li, T., Chang, H., Wang, M., Ni, B., Hong, R., Yan, S.: Crowded scene analysis: a survey. IEEE TCSVT 25(3), 367–386 (2015)Google Scholar
  5. 5.
    Ren, T., Qiu, Z., Liu, Y., Tong, Y., Bei, J.: Soft-assigned bag of features for object tracking. MMSJ 21(2), 189–205 (2015)Google Scholar
  6. 6.
    Bao, B.-K., Liu, G., Changsheng, X., Yan, S.: Inductive robust principal component analysis. IEEE TIP 21(8), 3794–3800 (2012)Google Scholar
  7. 7.
    Boykov, Y.Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: IEEE ICCV, pp. 105–112 (2001)Google Scholar
  8. 8.
    Ju, R., Ren, T., Wu, G.: StereoSnakes: contour based consistent object extraction for stereo images. In: IEEE ICCV (2015)Google Scholar
  9. 9.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM TOG 23(3), 309–314 (2004)CrossRefGoogle Scholar
  10. 10.
    Grady, L.: Random walks for image segmentation. IEEE TPAMI 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  11. 11.
    Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: IEEE CVPR, pp. 3129–3136 (2010)Google Scholar
  12. 12.
    Ge, L., Ju, R., Ren, T., Wu, G.: Interactive RGB-D image segmentation using hierarchical graph cut and geodesic distance. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015. LNCS, vol. 9314, pp. 114–124. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  13. 13.
    Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: IEEE ICCV, pp. 1–8 (2007)Google Scholar
  14. 14.
    McGuinness, K., O’Connor, N.E.: A comparative evaluation of interactive segmentation algorithms. PR 43(2), 434–444 (2010)zbMATHGoogle Scholar
  15. 15.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: IEEE ICCV, pp. 416–423 (2001)Google Scholar
  16. 16.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)Google Scholar
  17. 17.
    Ren, T., Wu, G.: Automatic image retargeting evaluation based on user perception. In: IEEE ICIP, pp. 1569–1572 (2010)Google Scholar
  18. 18.
    Ren, T., Liu, Y., Wu, G.: Full-reference quality assessment for video summary. In: IEEE ICDM Workshops, pp. 874–883 (2008)Google Scholar
  19. 19.
    Fu, Y., Cheng, J., Li, Z., Lu, H.: Saliency cuts: an automatic approach to object segmentation. In: ICPR, pp. 1–4 (2008)Google Scholar
  20. 20.
    McGuinness, K., O’Connor, N.: Toward automated evaluation of interactive segmentation. CVIU 115(6), 868–884 (2011)Google Scholar
  21. 21.
    Kohli, P., Nickisch, H., Rother, C., Rhemann, C.: User-centric learning and evaluation of interactive segmentation systems. IJCV 100(3), 261–274 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Moschidis, E., Graham, J.: A systematic performance evaluation of interactive image segmentation methods based on simulated user interaction. In: IEEE ISBI, pp. 928–931 (2010)Google Scholar
  23. 23.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  24. 24.
    Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms. In: ACM MM, pp. 1469–1472 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.State Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingChina
  2. 2.Software InstituteNanjing UniversityNanjingChina

Personalised recommendations