Advertisement

Security Ranking Among Assumptions Within the Uber Assumption Framework

  • Antoine Joux
  • Antoine Rojat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7807)

Abstract

In order to analyze a variety of cryptosystems, Boneh, Boyen and Goh introduced a general framework, the Uber assumption. In this article, we explore some particular instances of this Uber assumption; namely the n-\(\mathsf {CDH}\)-assumption, the \(n^{th}\)-\(\mathsf {CDH}\)-assumption and the \(Q\)-\(\mathsf {CDH}\)-assumption. We analyse their relationships from a security point of view. Our analysis does not rely on any other property of the considered group and, in particular, does not use the generic group model.

References

  1. 1.
    Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. J. Comput. Syst. Sci. 39(1), 21–50 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  3. 3.
    Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  5. 5.
    Biswas, G.: Diffie-Hellman technique: extended to multiple two-party keys and one multi-party key. IET Inf. Secur. 2(1), 12–18 (2008)CrossRefGoogle Scholar
  6. 6.
    Blanchet, B.: Security protocol verification: symbolic and computational models. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS, vol. 7215, pp. 3–29. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. Cryptology ePrint Archive, Report 2005/015 (2005). http://eprint.iacr.org/
  8. 8.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptology 17(4), 297–319 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  11. 11.
    Burmester, M., Desmedt, Y.G., Seberry, J.: Equitable key escrow with limited time span. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 380–391. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  12. 12.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor. 22(6), 644–654 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Feigenbaum, J., Fortnow, L.: On the random-self-reducibility of complete sets. In: Structure in Complexity Theory Conference, pp. 124–132 (1991)Google Scholar
  14. 14.
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  15. 15.
    Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996) Google Scholar
  16. 16.
    Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Inf. Theor. 39(5), 1639–1646 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  18. 18.
    Young, A., Yung, M.: Relationships between Diffie-Hellman and “Index Oracles”. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 16–32. Springer, Heidelberg (2005) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CryptoExpertsParisFrance
  2. 2.Chaire de Cryptologie de la Fondation de l’UPMCParisFrance
  3. 3.Laboratoire d’Informatique de Paris 6UPMC Sorbonnes UniversitésParisFrance
  4. 4.Laboratoire PRISM - Université de Versailles Saint-Quentin-en-YvelinesVersaillesFrance

Personalised recommendations