International Workshop on Hybrid Systems Biology

Hybrid Systems Biology pp 111-127 | Cite as

Exploiting the Eigenstructure of Linear Systems to Speed up Reachability Computations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7699)

Abstract

Reachability analysis has recently proved to be a useful technique for analysing the behaviour of under-specified biological models. In this paper, we propose a method exploiting the eigenstructure of a linear continuous system to efficiently estimate a bounded interval containing the time at which the system can reach a target set from an initial set. Then this estimation can be directly integrated in an existing algorithm for hybrid systems with linear continuous dynamics, to speed up reachability computations. Furthermore, it can also be used to improve time-efficiency of the hybridization technique that is based on a piecewise-linear approximation of non-linear continuous dynamics. The proposed method is illustrated on a number of examples including a biological model.

Keywords

Reachability analysis Linear systems Biological systems 

References

  1. 1.
    Spaceex: State space explorer (2010). http://spaceex.imag.fr/
  2. 2.
    Bemporad, A., Filippi, C., Torrisi, F.D.: Inner and outer approximations of polytopes using boxes. Computat. Geom. 27(2), 151–178 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Moler, C.C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dang, T., Le Guernic, C., Maler, O.: Computing reachable states for nonlinear biological models. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 126–141. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  5. 5.
    Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 11–20. ACM (2010)Google Scholar
  6. 6.
    Duggirala, P.S., Tiwari, A.: Safety verification for linear systems. In: 2013 Proceedings of the International Conference on Embedded Software (EMSOFT), pp. 1–10. IEEE (2013)Google Scholar
  7. 7.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Guernic, C.L.: Reachability analysis of hybrid systems with linear continuous dynamics. Ph.D. thesis, Université Grenoble 1 - Joseph Fourier (2009)Google Scholar
  9. 9.
    Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 137–151. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  10. 10.
    Laub, M.T., Loomis, W.F.: A molecular network that produces spontaneous oscillations in excitable cells of dictyostelium. Mol. Biol. Cell 9(12), 3521–3532 (1998)CrossRefGoogle Scholar
  11. 11.
    Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstractions for hybrid systems. In: Proceedings of the Eleventh ACM International Conference on Embedded Software Press, p. 14. IEEE (2013)Google Scholar
  12. 12.
    Perko, L.: Linear systems. In: Differential Equations and Dynamical Systems. Springer, Heidelberg, pp. 1–63 (1991)Google Scholar
  13. 13.
    Testylier, R., Dang, T.: NLTOOLBOX: a library for reachability computation of nonlinear dynamical systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 469–473. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.VERIMAG/CNRSGiereFrance
  2. 2.TIMC-IMAG, UMR 5525UJF-Grenoble 1/CNRSGrenobleFrance

Personalised recommendations