Modeling and Analysis of Qualitative Behavior of Gene Regulatory Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7699)


We describe a hybrid system based framework for modeling gene regulation and other biomolecular networks and a method for analysis of the dynamic behavior of such models. A particular feature of the proposed framework is the focus on qualitative experimentally testable properties of the system. With this goal in mind we introduce the notion of the frame of a hybrid system, which allows for the discretisation of the state space of the network. We propose two different methods for the analysis of this state space. The result of the analysis is a set of attractors that characterize the underlying biological system.

Whilst in the general case the problem of finding attractors in the state space is algorithmically undecidable, we demonstrate that our methods work for comparatively complex gene regulatory network model of \(\lambda \)-phage. For this model we are able to identify attractors corresponding to two known biological behaviors of \(\lambda \)-phage: lysis and lysogeny and also to show that there are no other stable behavior regions for this model.


Gene Regulatory Network Hybrid Automaton Transition Constant Strongly Connect Component Outgoing Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahmad, J., Bernot, J., Comet, J., Lime, D., Roux, O.: Hybrid modelling and dynamical analysis of gene regulatory networks with delays. Complexus 3, 231–251 (2007)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Belta, C., Ivančić, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  3. 3.
    Bartocci, E., Liò, P., Merelli, E., Paoletti, N.: Multiple verification in complex biological systems: the bone remodelling case study. In: Priami, C., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIV. LNCS, vol. 7625, pp. 53–76. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    Batt, G., Ben Salah, R., Maler, O.: On timed models of gene networks. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 38–52. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  5. 5.
    Brazma, A., Schlitt, T.: Reverse engineering of gene regulatory networks: a finite state linear model. Genome Biol. 4(P5), 1–31 (2003)Google Scholar
  6. 6.
    Brazma, R., Cerans, K., Ruklisa, D., Schlitt, T., Viksna, J.: HSM - a hybrid system based approach for modelling intracellular networks. Gene 518, 70–77 (2013)CrossRefGoogle Scholar
  7. 7.
    de Jong, H., Gouze, J., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66, 301–340 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fromentin, J., Eveillard, D., Roux, O.: Hybrid modeling of biological networks: mixing temporal and qualitative biological properties. BMC Syst. Biol. 4(79), 11 (2010)Google Scholar
  9. 9.
    Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-notch protein signalling. Syst. Biol. 1, 170–183 (2004)CrossRefGoogle Scholar
  10. 10.
    Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  11. 11.
    McAdams, H., Shapiro, L.: Circuit simulation of genetic networks. Science 269, 650–656 (1995)CrossRefGoogle Scholar
  12. 12.
    Ruklisa, D., Brazma, A., Viksna, J.: Reconstruction of gene regulatory networks under the finite state linear model. Genome Inform. 16, 225–236 (2005)Google Scholar
  13. 13.
    Schlitt, T., Brazma, A.: Modelling in molecular biology: describing transcription regulatory networks at different scales. Philos. Trans. R. Soc. Lond. B 361, 483–494 (2006)CrossRefGoogle Scholar
  14. 14.
    Serra, R., Vilani, M., Barbieri, A., Kaufmfman, S., Colacci, A.: One the dynamics of random boolean networks subject to noise: attractors, ergodic sets and cell types. J. Theor. Biol. 265, 185–193 (2010)CrossRefGoogle Scholar
  15. 15.
    Siebert, H., Bockmayr, A.: Temporal constraints in the logical analysis of regulatory networks. Theor. Comput. Sci. 391, 258–275 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Thomas, D., Thieffry, R., Kaufman, M.: Dynamic behaviour of biological regulatory networks. i. biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276 (1995)CrossRefzbMATHGoogle Scholar
  17. 17.
    Thomas, D., Thieffry, R., Kaufman, M.: Dynamic behaviour of biological regulatory networks. ii. immunity control in bacteriophage lamda. Bull. Math. Biol. 57, 277–297 (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.European Molecular Biology Laboratory, European Bioinformatics InstituteEMBL-EBIHinxtonUK
  2. 2.Institute of Mathematics and Computer ScienceRigaLatvia
  3. 3.University of CambridgeCambridgeUK
  4. 4.King’s College LondonLondonUK

Personalised recommendations