Control of Desynchronization Transitions in Delay-Coupled Networks of Type-I and Type-II Excitable Systems

  • Eckehard SchöllEmail author
  • Judith Lehnert
  • Andrew Keane
  • Thomas Dahms
  • Philipp Hövel
Conference paper
Part of the Understanding Complex Systems book series (UCS)


We discuss synchronization and desynchronization transitions in networks of delay-coupled excitable systems. These transitions arise in response to varying the balance of excitatory and inhibitory couplings in a small-world topology. To describe the local dynamics, we use generic models for type-I excitability, which arises close to a saddle-node bifurcation on an invariant cycle (SNIC or SNIPER), and for type-II excitability, which occurs close to a Hopf bifurcation (FitzHugh-Nagumo model). For large delay times both type-I and type-II systems behave in a similar way. This is different for small delay times, where in case of type-I excitability we find novel multiple transitions between synchronization and desynchronization, when the fraction of inhibitory links is increased. In contrast, only a single desynchronization transition occurs for the FitzHugh-Nagumo model (type-II excitability) for all values of the delay time.


Complex networks Delayed coupling Synchronization Excitatory and inhibitory balancing Type-I and type-II excitability Small-world 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schöll, E., Schuster, H.G. (eds.): Handbook of Chaos Control. Wiley-VCH, Weinheim (2008), second completely revised and enlarged editionGoogle Scholar
  2. 2.
    Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports 424, 175 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65 (1993)CrossRefGoogle Scholar
  7. 7.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kanter, I., Kopelowitz, E., Kinzel, W.: Public channel cryptography: chaos synchronization and Hilbert’s tenth problem. Phys. Rev. Lett. 101, 84102 (2008)CrossRefGoogle Scholar
  9. 9.
    Haken, H.: Brain Dynamics: Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise. Springer, Berlin (2007)zbMATHGoogle Scholar
  10. 10.
    Singer, W.: Neuronal Synchrony: A Versatile Code Review for the Definition of Relations? Neuron 24, 49 (1999)CrossRefGoogle Scholar
  11. 11.
    Engel, A., Fries, P., Singer, W.: Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience 2, 704 (2001)CrossRefGoogle Scholar
  12. 12.
    Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., Rodriguez, E.: Synchronization of neural activity across cortical areas correlates with conscious perception. J. Neurosci. 27, 2858 (2007)CrossRefGoogle Scholar
  13. 13.
    Traub, R.D., Wong, R.K.: Cellular mechanism of neuronal synchronization in epilepsy. Science 216, 745 (1982)CrossRefGoogle Scholar
  14. 14.
    Tass, P.A., Rosenblum, M.G., Weule, J., Kurths, J., Pikovsky, A.S., Volkmann, J., Schnitzler, A., Freund, H.J.: Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Phys. Rev. Lett. 81, 3291 (1998)CrossRefGoogle Scholar
  15. 15.
    Wünsche, H.J., Bauer, S., Kreissl, J., Ushakov, O., Korneyev, N., Henneberger, F., Wille, E., Erzgräber, H., Peil, M., Elsäßer, W., Fischer, I.: Synchronization of delay-coupled oscillators: A study of semiconductor lasers. Phys. Rev. Lett. 94, 163901 (2005)CrossRefGoogle Scholar
  16. 16.
    Carr, T.W., Schwartz, I.B., Kim, M.Y., Roy, R.: Delayed-mutual coupling dynamics of lasers: scaling laws and resonances. SIAM J. Appl. Dyn. Syst. 5, 699 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Erzgräber, H., Krauskopf, B., Lenstra, D.: Compound laser modes of mutually delay-coupled lasers. SIAM J. Appl. Dyn. Syst. 5, 30 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fischer, I., Vicente, R., Buldú, J.M., Peil, M., Mirasso, C.R., Torrent, M.C., García-Ojalvo, J.: Zero-lag long-range synchronization via dynamical relaying. Phys. Rev. Lett. 97, 123902 (2006)CrossRefGoogle Scholar
  19. 19.
    D’Huys, O., Vicente, R., Erneux, T., Danckaert, J., Fischer, I.: Synchronization properties of network motifs: Influence of coupling delay and symmetry. Chaos 18, 037116 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Timme, M., Wolf, F., Geisel, T.: Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators. Phys. Rev. Lett. 89, 258701 (2002)CrossRefGoogle Scholar
  21. 21.
    Rossoni, E., Chen, Y., Ding, M., Feng, J.: Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling. Phys. Rev. E 71, 061904 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Masoller, C., Torrent, M.C., García-Ojalvo, J.: Interplay of subthreshold activity, time-delayed feedback, and noise on neuronal firing patterns. Phys. Rev. E 78, 041907 (2008)CrossRefGoogle Scholar
  23. 23.
    Englert, A., Heiligenthal, S., Kinzel, W., Kanter, I.: Synchronization of chaotic networks with time-delayed couplings: An analytic study. Phys. Rev. E 83, 046222 (2011)CrossRefGoogle Scholar
  24. 24.
    Takamatsu, A., Tanaka, R., Yamada, H., Nakagaki, T., Fujii, T., Endo, I.: Spatiotemporal symmetry in rings of coupled biological oscillators of physarum plasmodial slime mold. Phys. Rev. Lett. 87, 078102 (2001)CrossRefGoogle Scholar
  25. 25.
    Tiana, G., Jensen, M.H.: The dynamics of genetic control in the cell: the good and bad of being late. Phil. Trans. R. Soc. (2013) (in print)Google Scholar
  26. 26.
    Haken, H.: Effect of delay on phase locking in a pulse coupled neural network. Eur. Phys. J. B 18, 545 (2000)CrossRefGoogle Scholar
  27. 27.
    Kuramoto, Y., Battogtokh, D.: Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators. Nonlin. Phen. in Complex Sys. 5, 380 (2002)Google Scholar
  28. 28.
    Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004)CrossRefGoogle Scholar
  29. 29.
    Martens, E.A., Laing, C.R., Strogatz, S.H.: Solvable model of spiral wave chimeras. Phys. Rev. Lett. 104, 044101 (2010)CrossRefGoogle Scholar
  30. 30.
    Motter, A.E.: Nonlinear dynamics: Spontaneous synchrony breaking. Nature Physics 6, 164 (2010)CrossRefGoogle Scholar
  31. 31.
    Omelchenko, I., Maistrenko, Y.L., Hövel, P., Schöll, E.: Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011)CrossRefGoogle Scholar
  32. 32.
    Omelchenko, I., Riemenschneider, B., Hövel, P., Maistrenko, Y.L., Schöll, E.: Transition from spatial coherence to incoherence in coupled chaotic systems. Phys. Rev. E 85, 026212 (2012)CrossRefGoogle Scholar
  33. 33.
    Hagerstrom, A., Murphy, T.E., Roy, R., Hövel, P., Omelchenko, I., Schöll, E.: Experimental observation of chimeras in coupled-map lattices. Nature Physics 8, 658 (2012)CrossRefGoogle Scholar
  34. 34.
    Tinsley, M.R., Nkomo, S., Showalter, K.: Chimera and phase cluster states in populations of coupled chemical oscillators. Nature Physics 8, 662 (2012)CrossRefGoogle Scholar
  35. 35.
    Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109 (1998)CrossRefGoogle Scholar
  36. 36.
    Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 074104 (2004)CrossRefGoogle Scholar
  37. 37.
    Choe, C.U., Dahms, T., Hövel, P., Schöll, E.: Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states. Phys. Rev. E 81, 025205(R) (2010)CrossRefGoogle Scholar
  38. 38.
    Kinzel, W., Englert, A., Reents, G., Zigzag, M., Kanter, I.: Synchronization of networks of chaotic units with time-delayed couplings. Phys. Rev. E 79, 056207 (2009)CrossRefGoogle Scholar
  39. 39.
    Flunkert, V., Yanchuk, S., Dahms, T., Schöll, E.: Synchronizing distant nodes: a universal classification of networks. Phys. Rev. Lett. 105, 254101 (2010)CrossRefGoogle Scholar
  40. 40.
    Heiligenthal, S., Dahms, T., Yanchuk, S., Jüngling, T., Flunkert, V., Kanter, I., Schöll, E., Kinzel, W.: Strong and weak chaos in nonlinear networks with time-delayed couplings. Phys. Rev. Lett. 107, 234102 (2011)CrossRefGoogle Scholar
  41. 41.
    Dahms, T., Lehnert, J., Schöll, E.: Cluster and group synchronization in delay-coupled networks. Phys. Rev. E 86, 016202 (2012)CrossRefGoogle Scholar
  42. 42.
    Lehnert, J., Dahms, T., Hövel, P., Schöll, E.: Loss of synchronization in complex neural networks with delay. Europhys. Lett. 96, 60013 (2011)CrossRefGoogle Scholar
  43. 43.
    Keane, A., Dahms, T., Lehnert, J., Suryanarayana, S.A., Hövel, P., Schöll, E.: Synchronisation in networks of delay-coupled type-I excitable systems. Eur. Phys. J. B 85, 407 (2012)CrossRefGoogle Scholar
  44. 44.
    Vogels, T.P., Abbott, L.F.: Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nature Neurosci. 12, 483 (2009)CrossRefGoogle Scholar
  45. 45.
    Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C., Gerstner, W.: Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569 (2011)CrossRefGoogle Scholar
  46. 46.
    Ernst, U., Pawelzik, K.: Sensible balance. Science 334, 1507 (2011)CrossRefGoogle Scholar
  47. 47.
    Hennequin, G., Vogels, T.P., Gerstner, W.: Non-normal amplification in random balanced neuronal networks. Phys. Rev. E 86, 011909 (2012)CrossRefGoogle Scholar
  48. 48.
    Selivanov, A.A., Lehnert, J., Dahms, T., Hövel, P., Fradkov, A.L., Schöll, E.: Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E 85, 016201 (2012)CrossRefzbMATHGoogle Scholar
  49. 49.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440 (1998)CrossRefGoogle Scholar
  50. 50.
    Adamic, L.A.: The small world web, vol. 1696/1999. Lecture Notes in Computer Science. Springer Berlin, Heidelberg (1999)Google Scholar
  51. 51.
    Sporns, O., Tononi, G., Edelman, G.M.: Theoretical Neuroanatomy: Relating Anatomical and Functional Connectivity in Graphs and Cortical Connection Matrices. Cereb. Cortex 10, 127 (2000)CrossRefGoogle Scholar
  52. 52.
    Sporns, O.: Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems 85, 55 (2006)CrossRefGoogle Scholar
  53. 53.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)CrossRefGoogle Scholar
  54. 54.
    Haider, B., Duque, A., Hasenstaub, A.R., McCormick, D.A.: Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535 (2006)CrossRefGoogle Scholar
  55. 55.
    Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263, 341 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurcation Chaos 10, 1171 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Hodgkin, A.L.: The local electric changes associated with repetitive action in a medullated axon. J. Physiol. 107, 165 (1948)CrossRefGoogle Scholar
  58. 58.
    Hu, G., Ditzinger, T., Ning, C.Z., Haken, H.: Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807 (1993)CrossRefGoogle Scholar
  59. 59.
    Ditzinger, T., Ning, C.Z., Hu, G.: Resonancelike responses of autonomous nonlinear systems to white noise. Phys. Rev. E 50, 3508 (1994)CrossRefGoogle Scholar
  60. 60.
    Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Hizanidis, J., Aust, R., Schöll, E.: Delay-induced multistability near a global bifurcation. Int. J. Bifur. Chaos 18, 1759 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Aust, R., Hövel, P., Hizanidis, J., Schöll, E.: Delay control of coherence resonance in type-I excitable dynamics. Eur. Phys. J. ST 187, 77 (2010)CrossRefGoogle Scholar
  63. 63.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)CrossRefGoogle Scholar
  64. 64.
    Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061 (1962)CrossRefGoogle Scholar
  65. 65.
    Monasson, R.: Diffusion, localization and dispersion relations on"small-world" lattices. Eur. Phys. J. B 12, 555 (1999)CrossRefGoogle Scholar
  66. 66.
    Gerschgorin, S.A.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk. SSSR 7, 749 (1931)zbMATHGoogle Scholar
  67. 67.
    Farkas, I., Derenyi, I., Barabási, A.-L., Vicsek, T.: Spectra of real-world graph: Beyond the semicircle law. Phys. Rev. E 64, 026704 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Eckehard Schöll
    • 1
    Email author
  • Judith Lehnert
    • 1
  • Andrew Keane
    • 1
  • Thomas Dahms
    • 1
  • Philipp Hövel
    • 1
    • 2
  1. 1.Institut Für Theoretische PhysikTechnische Universität BerlinBerlinGermany
  2. 2.Bernstein Center for Computational NeuroscienceHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations