Advertisement

Large-Scale Neural Network Model for Functional Networks of the Human Cortex

  • Vesna VuksanovićEmail author
  • Philipp Hövel
Conference paper
Part of the Understanding Complex Systems book series (UCS)

Abstract

We investigate the influence of indirect connections, interregional distance and collective effects on the large-scale functional networks of the human cortex. We study topologies of empirically derived resting state networks (RSNs), extracted from fMRI data, and model dynamics on the obtained networks. The RSNs are calculated from mean time-series of blood-oxygen-level-dependent (BOLD) activity of distinct cortical regions via Pearson correlation coefficients. We compare functional-connectivity networks of simulated BOLD activity as a function of coupling strength and correlation threshold. Neural network dynamics underpinning the BOLD signal fluctuations are modelled as excitable FitzHugh-Nagumo oscillators subject to uncorrelated white Gaussian noise and time-delayed interactions to account for the finite speed of the signal propagation along the axons. We discuss the functional connectivity of simulated BOLD activity in dependence on the signal speed and correlation threshold and compare it to the empirical data.

Keywords

Functional connectivity Resting state networks Time-delays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience 8(9), 700–711 (2007)CrossRefGoogle Scholar
  2. 2.
    Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine 34(4), 537–541 (1995)CrossRefGoogle Scholar
  3. 3.
    Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann, C.F.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006)CrossRefGoogle Scholar
  4. 4.
    Vincent, J.L., Patel, G.H., Fox, M.D., Snyder, A.Z., Baker, J.T., Van Essen, D.C., Zempel, J.M., Snyder, L.H., Corbetta, M., Raichle, M.E.: Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140), 83–86 (2007)CrossRefGoogle Scholar
  5. 5.
    Honey, C.J., Kötter, R., Breakspear, M., Sporns, O.: Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. U.S.A. 104, 10240–10245 (2007)CrossRefGoogle Scholar
  6. 6.
    Rubinov, M., Sporns, O., Van Leeuwen, C., Breakspear, M.: Symbiotic relationship between brain structure and dynamics. BMC Neuroscience 10(1), 55 (2009)CrossRefGoogle Scholar
  7. 7.
    Ghosh, A., Rho, Y., McIntosh, A.R., Kötter, R., Jirsa, V.K.: Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput Biol 4(10), e1000196 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ghosh, A., Rho, Y., McIntosh, A.R., Kötter, R., Jirsa, V.K.: Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn. Neurodyn. 2(2), 115–120 (2008)CrossRefGoogle Scholar
  9. 9.
    Deco, G., Jirsa, V.K., McIntosh, A.R., Sporns, O., Kötter, R.: Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. U.S.A. 106(25), 10302–10307 (2009)CrossRefGoogle Scholar
  10. 10.
    Cabral, J., Hugues, E., Sporns, O., Deco, G.: Role of local network oscillations in resting-state functional connectivity. NeuroImage 57(1), 130–139 (2011)CrossRefGoogle Scholar
  11. 11.
    Cabral, J., Hugues, E., Kringelbach, M.L., Deco, G.: Modeling the outcome of structural disconnection on resting-state functional connectivity. NeuroImage 62, 1342–1353 (2012)CrossRefGoogle Scholar
  12. 12.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10(3), 186–198 (2009)CrossRefGoogle Scholar
  13. 13.
    Deco, G., Jirsa, V.K.: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. The Journal of Neuroscience 32(10), 3366–3375 (2012)CrossRefGoogle Scholar
  14. 14.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)CrossRefGoogle Scholar
  15. 15.
    Nagumo, J., Arimoto, S.: Yoshizawa., S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)CrossRefGoogle Scholar
  16. 16.
    Friston, K.J., Mechelli, A., Turner, R., Price, C.J.: Nonlinear responses in fmri: The balloon model, volterra kernels, and other hemodynamics. NeuroImage 12(4), 466–477 (2000)CrossRefGoogle Scholar
  17. 17.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: Fsl. NeuroImage 62(2), 782–790 (2012)CrossRefGoogle Scholar
  18. 18.
    Kiviniemi, V., Starck, T., Remes, J., Long, X., Nikkinen, J., Haapea, M., Veijola, J., Moilanen, I., Isohanni, M., Zang, Y.F., Tervonen, O.: Functional segmentation of the brain cortex using high model order group pica. Hum. Brain Mapp. 30(12), 3865–3886 (2009)CrossRefGoogle Scholar
  19. 19.
    Anderson, J.S., Ferguson, M.A., Lopez-Larson, M., Yurgelun-Todd, D.: Reproducibility of single-subject functional connectivity measurements. Am. J. Neuroradiol. 32(3), 548–555 (2011)CrossRefGoogle Scholar
  20. 20.
    Bullmore, E.T., Bassett, D.S.: Brain graphs: graphical models of the human brain connectome. Annual review of clinical psychology 7, 113–140 (2011)CrossRefGoogle Scholar
  21. 21.
    Flunkert, V., Schöll, E.: pydelay – a python tool for solving delay differential equations. arXiv:0911.1633 [nlin.CD] (2009)
  22. 22.
    Bogacki, P., Shampine, L.F.: A 3(2) pair of runge - kutta formulas. Applied Mathematics Letters 2(4), 321–325 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shampine, L.F., Thompson, S.: Solving DDEs in Matlab. Appl. Num. Math. 37(4), 441–458 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut Für Theoretische PhysikTechnische Universität BerlinBerlinGermany
  2. 2.Bernstein Center for Computational NeuroscienceHumboldt-Universität Zu BerlinBerlinGermany
  3. 3.Center for Complex Network ResearchNortheastern UniversityBostonUSA

Personalised recommendations