Energy-Aware Cognitive Radio Systems

Part of the Studies in Systems, Decision and Control book series (SSDC, volume 50)


The concept of energy-aware communications has spurred the interest of the research community in the most recent years due to various environmental and economical reasons. It becomes indispensable for wireless communication systems to shift their resource allocation problems from optimizing traditional metrics, such as throughput and latency, to an environmental-friendly energy metric. Although cognitive radio systems introduce spectrum efficient usage techniques, they employ new complex technologies for spectrum sensing and sharing that consume extra energy to compensate for overhead and feedback costs. Considering an adequate energy efficiency metric—that takes into account the transmit power consumption, circuitry power, and signaling overhead—is of momentous importance such that optimal resource allocations in cognitive radio systems reduce the energy consumption. A literature survey of recent energy-efficient based resource allocations schemes is presented for cognitive radio systems. The energy efficiency performances of these schemes are analyzed and evaluated under power budget, co-channel and adjacent-channel interferences, channel estimation errors, quality-of-service, and/or fairness constraints. Finally, the opportunities and challenges of energy-aware design for cognitive radio systems are discussed.


Orthogonal Frequency Division Multiplex Cognitive Radio Energy Efficiency Cognitive Radio Network Fusion Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Akin, S., Gursoy, M.C.: On the throughput and energy efficiency of cognitive MIMO transmissions. IEEE Trans. Wireless Commun. 62(7), 3245–3260 (2013)Google Scholar
  2. 2.
    Althunibat, S., Sucasas, V., Marques, H., Rodriguez, J., Tafazolli, R., Granelli, F.: On the trade-off between security and energy efficiency in cooperative spectrum sensing for cognitive radio. IEEE Commun. Lett. 17(8), 1564–1567 (2013)CrossRefGoogle Scholar
  3. 3.
    Amin, O., Abediseid, W., Alouini, M.S.: Outage performance of cognitive radio systems with improper gaussain signaling. In: IEEE International Symposium on Information Theory, pp. 1851–1855 (2015)Google Scholar
  4. 4.
    Amin, O., Bedeer, E., Ahmed, M., Dobre, O.: Energy efficiency—spectral efficiency trade-off: a multiobjective optimization approach. IEEE Trans. Veh. Technol. (to appear)Google Scholar
  5. 5.
    Andrews, J.G., Claussen, H., Dohler, M., Rangan, S., Reed, M.C.: Femtocells: past, present, and future. IEEE J. Sel. Areas Commun. 30(3), 497–508 (2012)CrossRefGoogle Scholar
  6. 6.
    Bajalinov, E.B.: Linear-Fractional Programming: Theory, Methods, Applications and Software, vol 84. Springer, New York (2003)Google Scholar
  7. 7.
    Ban, T.W., Choi, W., Sung, D.K.: Capacity and energy efficiency of multi-user spectrum sharing systems with opportunistic scheduling. IEEE Trans. Wireless Commun. 8(6), 2836–2841 (2009)CrossRefGoogle Scholar
  8. 8.
    Bansal, G., Hossain, M., Bhargava, V.: Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems. IEEE Trans. Wireless Commun. 7(11), 4710–4718 (2008)CrossRefGoogle Scholar
  9. 9.
    Bayhan, S., Alagoz, F.: Scheduling in centralized cognitive radio networks for energy efficiency. IEEE Trans. Veh. Technol. 62(2), 582–595 (2013)CrossRefGoogle Scholar
  10. 10.
    Bayhan, S., Eryigit, S., Alagoz, F., Tugcu, T.: Low complexity uplink schedulers for energy-efficient cognitive radio networks. IEEE Commun. Lett. 2(3), 363–366 (2013)CrossRefGoogle Scholar
  11. 11.
    Bedeer, E., Dobre, O.A., Ahmed, M.H., Baddour, K.: A multiobjective optimization approach for optimal link adaptation of OFDM-based cognitive radio systems with imperfect spectrum sensing. IEEE Trans. Wireless Commun. 13(4), 2339–2351 (2014)CrossRefGoogle Scholar
  12. 12.
    Bedeer, E., Amin, O., Dobre, O., Ahmed, M., Baddour, K.: Energy-efficient power loading for OFDM-based cognitive radio systems with channel uncertainties. IEEE Trans. Veh. Technol. 64(6), 2672–2677 (2015)CrossRefGoogle Scholar
  13. 13.
    Bedeer, E., Dobre, O., Ahmed, M., Baddour, K.: Rate-interference tradeoff in OFDM-based cognitive radio systems. IEEE Trans. Veh. Technol. (to appear)Google Scholar
  14. 14.
    Bertsekas, D.P., Bertsekas, D.P., Bertsekas, D.P., Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1. Athena Scientific Belmont, MA (1995)zbMATHGoogle Scholar
  15. 15.
    Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta numerica 4, 1–51 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bolla, R., Bruschi, R., Davoli, F., Cucchietti, F.: Energy efficiency in the future internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Commun. Surveys Tutor. 13(2), 223–244 (2011) (Second Quarter )Google Scholar
  17. 17.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)Google Scholar
  18. 18.
    Chen, R., Park, J.M., Hou, Y.T., Reed, J.H.: Toward secure distributed spectrum sensing in cognitive radio networks. IEEE Commun. Mag. 46(4), 50–55 (2008)CrossRefGoogle Scholar
  19. 19.
    Chen, Y., Nossek, J., Mezghani, A.: Circuit-aware cognitive radios for energy-efficient communications. IEEE Wireless Commun. Lett. 2(3), 323–326 (2013)CrossRefGoogle Scholar
  20. 20.
    Cheung, W.C., Quek, T.Q., Kountouris, M.: Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE J. Sel. Areas Commun. 30(3), 561–574 (2012)CrossRefGoogle Scholar
  21. 21.
    Cui, S., Goldsmith, A.J., Bahai, A.: Energy-constrained modulation optimization. IEEE Trans. Wireless Commun. 4(5), 2349–2360 (2005)CrossRefGoogle Scholar
  22. 22.
    Dinkelbach, W.: On nonlinear fractional programming. Manage. Sci. 13(7), 492–498 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Du, H., Ratnarajah, T.: Robust utility maximization and admission control for a MIMO cognitive radio network. IEEE Trans. Veh. Technol. 62(4), 1707–1718 (2013)CrossRefGoogle Scholar
  24. 24.
    Ericsson, A.B.: Sustainable energy use in mobile communications. (2007)Google Scholar
  25. 25.
    Fu, L., Zhang, Y.J.A., Huang, J.: Energy efficient transmissions in MIMO cognitive radio networks. IEEE J. Sel. Areas Commun. 31(11), 2420–2431 (2013)CrossRefGoogle Scholar
  26. 26.
    Gao, S., Qian, L., Vaman, D.R.: Distributed energy efficient spectrum access in cognitive radio wireless ad hoc networks. IEEE Trans. Wireless Commun. 8(10), 5202–5213 (2009)CrossRefGoogle Scholar
  27. 27.
    Han, J.A., Jeon, W.S., Jeong, D.G.: Energy-efficient channel management scheme for cognitive radio sensor networks. IEEE Trans. Veh. Technol. 60(4), 1905–1910 (2011)CrossRefGoogle Scholar
  28. 28.
    Hasan, Z., Bansal, G., Hossain, E., Bhargava, V.: Energy-efficient power allocation in OFDM-based cognitive radio systems: a risk-return model. IEEE Trans. Wireless Commun. 8(12), 6078–6088 (2009)CrossRefGoogle Scholar
  29. 29.
    Hossain, E., Bhargava, V.: Cognitive Wireless Communication Networks. Springer, New York (2007)Google Scholar
  30. 30.
    Huang, D., Kang, G., Wang, B., Tian, H.: Energy-efficient spectrum sensing strategy in cognitive radio networks. IEEE Commun. Lett. 17(5), 928–931 (2013)CrossRefGoogle Scholar
  31. 31.
    Huang, S., Chen, H., Zhang, Y., Zhao, F.: Energy-efficient cooperative spectrum sensing with amplify-and-forward relaying. IEEE Commun. Lett. 16(4), 450–453 (2012)CrossRefGoogle Scholar
  32. 32.
    Liang, Y.C., Zeng, Y., Peh, E.C., Hoang, A.T.: Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wireless Commun. 7(4), 1326–1337 (2008)CrossRefGoogle Scholar
  33. 33.
    Mahmoud, H., Yucek, T., Arslan, H.: OFDM for cognitive radio: merits and challenges. IEEE Wireless Commun. Mag. 16(2), 6–15 (2009)CrossRefGoogle Scholar
  34. 34.
    Maleki, S., Pandharipande, A., Leus, G.: Energy-efficient distributed spectrum sensing for cognitive sensor networks. IEEE Sensors J. 11(3), 565–573 (2011)CrossRefGoogle Scholar
  35. 35.
    Mao, J., Xie, G., Gao, J., Liu, Y.: Energy efficiency optimization for cognitive radio MIMO broadcast channels. IEEE Commun. Lett. 17(2), 337–340 (2013)CrossRefGoogle Scholar
  36. 36.
    Mao, J., Xie, G., Gao, J., Liu, Y.: Energy efficiency optimization for OFDM-based cognitive radio systems: a water-filling factor aided search method. IEEE Trans. Commun. 12(5), 2366–2375 (2013)Google Scholar
  37. 37.
    Monahan, G.E.: State of the art-a survey of partially observable markov decision processes: theory, models, and algorithms. Manage. Sci. 28(1), 1–16 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Nguyen, D., Tran, L.N., Pirinen, P., Latva-aho, M.: Precoding for full duplex multiuser MIMO systems: spectral and energy efficiency maximization. IEEE Trans. Signal Process 61(16), 4038–4050 (2013)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Oto, M.C., Akan, O.B.: Energy-efficient packet size optimization for cognitive radio sensor networks. IEEE Trans. Wireless Commun. 11(4), 1544–1553 (2012)CrossRefGoogle Scholar
  40. 40.
    Pei, Y., Liang, Y.C., Teh, K.C., Li, K.H.: Energy-efficient design of sequential channel sensing in cognitive radio networks: optimal sensing strategy, power allocation, and sensing order. IEEE J. Sel. Areas Commun. 29(8), 1648–1659 (2011)CrossRefGoogle Scholar
  41. 41.
    Sanchez, S.M., Souza, R.D., Fernández, E.M.G., Reguera, V.A.: Rate and energy efficient power control in a cognitive radio ad hoc network. IEEE Signal Process Lett. 20(5), 451–454 (2013)CrossRefGoogle Scholar
  42. 42.
    Shi, Z., Teh, K., Li, K.: Energy-efficient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems. IEEE Commun. Lett. 17(3), 565–568 (2013)CrossRefGoogle Scholar
  43. 43.
    Sun, X., Tsang, D.: Energy-efficient cooperative sensing scheduling for multi-band cognitive radio networks. IEEE Trans. Wireless Commun. 12(10), 4943–4955 (2013)CrossRefGoogle Scholar
  44. 44.
    Wang, J., Palomar, D.P.: Worst-case robust MIMO transmission with imperfect channel knowledge. IEEE Trans. Signal Process 57(8), 3086–3100 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Wang, S., Ge, M., Zhao, W.: Energy-efficient resource allocation for OFDM-based cognitive radio networks. IEEE Trans. Commun. 61(8), 3181–3191 (2013)CrossRefGoogle Scholar
  46. 46.
    Wang, Y., Xu, W., Yang, K., Lin, J.: Optimal energy-efficient power allocation for OFDM-based cognitive radio networks. IEEE Commun. Lett. 16(9), 1420–1423 (2012)CrossRefGoogle Scholar
  47. 47.
    Wildemeersch, M., Quek, T., Slump, C., Rabbachin, A.: Cognitive small cell networks: energy efficiency and trade-offs. IEEE Trans. Commun. 61(9), 4016–4029 (2013)CrossRefGoogle Scholar
  48. 48.
    Wu, Y., Tsang, D.H.: Energy-efficient spectrum sensing and transmission for cognitive radio system. IEEE Commun. Lett. 15(5), 545–547 (2011)CrossRefGoogle Scholar
  49. 49.
    Wu, Y., Lau, V.K., Tsang, D.H., Qian, L.P.: Energy-efficient delay-constrained transmission and sensing for cognitive radio systems. IEEE Trans. Veh. Technol. 61(7), 3100–3113 (2012)CrossRefGoogle Scholar
  50. 50.
    Xiong, C., Lu, L., Li, G.: Energy-efficient spectrum access in cognitive radios. IEEE J. Sel. Areas Commun. 32(3), 550–562 (2014)CrossRefGoogle Scholar
  51. 51.
    Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surveys Tutor. 11(1), 116–130 (2009)CrossRefGoogle Scholar
  52. 52.
    Yue, H., Pan, M., Fang, Y., Glisic, S.: Spectrum and energy efficient relay station placement in cognitive radio networks. IEEE J. Sel. Areas Commun. 31(5), 883–893 (2013)CrossRefGoogle Scholar
  53. 53.
    Zhang, L., Liang, Y.C., Xin, Y.: Joint beamforming and power allocation for multiple access channels in cognitive radio networks. IEEE J. Sel. Areas Commun. 26(1), 38–51 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of British ColumbiaKelownaCanada
  2. 2.King Abdullah University of Science and TechnologyThuwalSaudi Arabia
  3. 3.Memorial University of NewfoundlandSt. John’sCanada

Personalised recommendations