The Approach to the Extension of the CLAVIRE Cloud Platform for Researchers’ Collaboration

  • A. V. Dukhanov
  • E. V. Bolgova
  • A. A. Bezgodov
  • L. A. Bezborodov
  • A. V. Boukhanovsky
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 416)

Abstract

This paper describes an approach to extend the CLAVIRE platform for sharing traditional scientific documents, data sources, executable services and 3D-visualization means for collaboration and peer review. This approach includes the development of an intellectual editor for scientific package integration into CLAVIRE, a C++ based graphical library and graphical engine “Fusion”; composite application with interaction between package and visualization tools. This means facilitating the process of sharing and presenting scientific results in a vivid and interactive manner. The considered approach was developed within the principles of research object ontologies, and with the use of the workflow-centric research object approach and method of interactive workflow. The examination of the approach was performed by evolving young scientists from cities located across Russia. At the end of the paper, the approach to rapid learning courses and resource design was developed.

Keywords

Scientific collaboration Scientific result sharing Scientific package Cloud service CLAVIRE cloud platform Research object 

Notes

Acknowledgment

This paper is supported by the Russian Scientific Foundation, grant #14-21-00137 “Supercomputer simulation of critical phenomena in complex social systems”

References

  1. 1.
    Hardaway, D.: Sharing research in the 21st century: borrowing a page from open source software. Commun. ACM 48, 125–128 (2005)CrossRefGoogle Scholar
  2. 2.
    Meyer, D.: Academic social network ResearchGate aids debunking of stem cell study, (2014). In: GIGAOM. http://gigaom.com/2014/03/14/academic-social-network-researchgate-aids-debunking-of-stem-cell-study/. Accessed 31 Dec 2014
  3. 3.
    IJsbrand, A., Atzeni, S., Koers, H., Elena, Z.-S.: Bringing digital science deep inside the scientific article: the elsevier article of the future project. Lib. Q. 24 (2014)Google Scholar
  4. 4.
    Mell, P., Grance, T.: The NIST definition of cloud computing recommendations of the National Institute of Standards and Technology, Gaithersburg (2011)Google Scholar
  5. 5.
    Barseghian, D., Altintas, I., Jones, M.B., et al.: Workflows and extensions to the Kepler scientific workflow system to support environmental sensor data access and analysis. Ecol. Inform. 5, 42–50 (2010). doi: 10.1016/j.ecoinf.2009.08.008 CrossRefGoogle Scholar
  6. 6.
    Elmroth, E., Hernández, F., Tordsson, J.: Three fundamental dimensions of scientific workflow interoperability: Model of computation, language, and execution environment. Future Gener. Comput. Syst. 26, 245–256 (2010). doi: 10.1016/j.future.2009.08.011 CrossRefGoogle Scholar
  7. 7.
    Manuel, S., Batista, V., Dávila, A.M.R., et al.: OrthoSearch: a scientific workflow approach to detect distant homologies on protozoans, pp. 1282–1286. In: Proceedings of the ACM Symposium on Applied Computing, New York, New York, USA (2008)Google Scholar
  8. 8.
    Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: An overview of workflow system features and capabilities. Futur. Gener. Comput. Syst. 25, 528–540 (2009). doi: 10.1016/j.future.2008.06.012 CrossRefGoogle Scholar
  9. 9.
    Oinn, T., Addis, M., Ferris, J., et al.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20, 3045–3054 (2004). doi: 10.1093/bioinformatics/bth361 CrossRefGoogle Scholar
  10. 10.
    Bochenina, K.: A comparative study of scheduling algorithms for the multiple deadline-constrained workflows in heterogeneous computing systems with time windows. Proc. Comput. Sci. 29, 509–522 (2014). doi: 10.1016/j.procs.2014.05.046 CrossRefGoogle Scholar
  11. 11.
    Lu, S., Zhang, J.:Collaborative scientific workflows supporting collaborative science. Int. J. Bus. Process. Integr. 15, 39–47 (2011). doi: 10.1109/MIC.2011.87
  12. 12.
    Förstner, K., Hagedorn, G., Koltzenburg, C., et al.: Collaborative platforms for streamlining workflows in open science. Nat. Preced. (2011). doi: 10.1038/npre.2011.6066.1 Google Scholar
  13. 13.
    Bechhofer, S., De Roure, D., Gamble, M., et al.: Research objects: towards exchange and reuse of digital knowledge. Nat. Preced. (2010). doi: 10.1038/npre.2010.4626 Google Scholar
  14. 14.
    Belhajjame K., Zhao J., Garijo D.: The research object suite of ontologies: Sharing and exchanging research data and methods on the open web. (2014)Google Scholar
  15. 15.
    Dukhanov, A., Bolgova, E., Bezgodov, A., Boukhanovsky, A.:The Approach to Extension of the CLAVIRE Cloud Platform for the Researchers’ Collaboration. In: Proceedings of the 9th International Conference on Knowledge, Information and Creativity Support Systems, pp. 370–383 (2014)Google Scholar
  16. 16.
    Knyazkov, K.V., Kovalchuk, S.V., Tchurov, T.N., et al.: CLAVIRE: e-Science infrastructure for data-driven computing. J. Comput. Sci. 3, 504–510 (2012). doi: 10.1016/j.jocs.2012.08.006 CrossRefGoogle Scholar
  17. 17.
    Knyazkov, K.V., Nasonov, D., Tchurov, T.N., Boukhanovsky, A.V.: Interactive workflow-based infrastructure for urgent computing. Proc. Comput. Sci. 18, 2223–2232 (2013). doi: 10.1016/j.procs.2013.05.393 CrossRefGoogle Scholar
  18. 18.
    Smirnov, P.A., Kovalchuk, S.V., Dukhanov, A.V.: Domain ontologies integration for virtual modelling and simulation environments. Procedia Comput Sci 29, 2507–2514 (2014). doi: 10.1016/j.procs.2014.05.234 CrossRefGoogle Scholar
  19. 19.
    Shank, J.D.: The emergence of learning objects: the reference librarian’s role. Res Strateg 19, 193–203 (2003). doi: 10.1016/j.resstr.2005.01.002 CrossRefGoogle Scholar
  20. 20.
    Grunwald, S., Reddy, K.R.: In: Concept Guide on Reusable Learning Objects with Application to Soil, Water and Environmental Sciences, pp. 1–12 (2007)Google Scholar
  21. 21.
    Dukhanov, A., Smirnov, P., Karpova, M., Kovalchuk, S.: e-Learning Course Design Based on the Virtual Simulation Objects Concept. In: Proceeding of the 2014 IEEE 8th International Conference on Application of Information and Communication Technologies, pp. 508–513 (2014)Google Scholar
  22. 22.
    Karsakov, A., Bilyatdinova, A., Hoekstra, A.: 3D virtual environment for project-based learning. In: Proceedings of the 2014 IEEE 8th International Conference on Application of Information and Communication Technologies, pp. 468–472 (2014)Google Scholar
  23. 23.
    7 Things You Should Know About Learning Tools Interoperability (2013)Google Scholar
  24. 24.
    Bilyatdinova, A., Karsakov, A., Bezgodov, A., Dukhanov, A.: Virtual environment for creative and collaborative learning. Proc. 9th Int. Conf. Knowledge, Inf. Creat. Support Syst. 313–320 (2014)Google Scholar
  25. 25.
    Sloot, P.M.A., Boukhanovsky, A.V.: Young Russian researchers take up challenges in the computational sciences. J. Comput. Sci. 3, 439–440 (2012). doi: 10.1016/j.jocs.2012.08.009 CrossRefGoogle Scholar
  26. 26.
    Tyutlyaeva, E., Kurin, E., Moskovsky, A., Konuhov, S.: Abstract: Using Active Storage Concept for Seismic Data Processing. 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, IEEE, pp 1389–1390. (2012)Google Scholar
  27. 27.
    Suvorov, E., Akhmedzhanov, R., Fadeev, D., et al.: On the peculiarities of THz radiation generation in a laser induced plasmas. J. Infrared Millimeter Terahertz Waves 32, 1243–1252 (2011)CrossRefGoogle Scholar
  28. 28.
    Biktimirov, M.R., Biryaltsev, E.V., Demidov, D.E., et al.: Information infrastructure of tatarstan: from «SENet-Tatarstan» to «SEGrig-Tatarstan». Russ. Natl. Supercomput. Forum (2012)Google Scholar
  29. 29.
    Butyugin, D.S., Il’in, V.P., Petukhov, A.V.: Comparative Analysis of Approaches for High Frequency Electromagnetic Simulation. In: Proceedings of the Progress in Electromagnetics Research Symposium (PIERS), Moscow, pp. 1483–1487 (2009)Google Scholar
  30. 30.
    Dukhanov, A., Karpova, M., Bochenina, K.: Design Virtual Learning Labs for Courses in Computational Science with Use of Cloud Computing Technologies. Proc. Comput. Sci. 29, 2472–2482 (2014). doi: 10.1016/j.procs.2014.05.231 CrossRefGoogle Scholar
  31. 31.
    Bochenina, K., Dukhanov, A.: An approach to a rapid development of the problem-oriented educational services based on the results of scientific researches. WIT Trans. Eng. Sci. 93, 877–884 (2014)CrossRefGoogle Scholar
  32. 32.
    Bezgodov, A., Esin, D., Karsakov, A., et al.: Graphic toolkit for virtual testbed creation: application for marine research and design. Dyn. Complex. Syst. Century 7, 34 (2013)Google Scholar
  33. 33.
    Dukhanov, A.V., Krzhizhanovskaya, V.V., Bilyatdinova, A., et al.: Double-degree master’s program in computational science: experiences of ITMO University and University of Amsterdam. Proc. Comput. Sci. 29, 1433–1445 (2014). doi: 10.1016/j.procs.2014.05.130 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. V. Dukhanov
    • 1
  • E. V. Bolgova
    • 1
  • A. A. Bezgodov
    • 1
  • L. A. Bezborodov
    • 1
  • A. V. Boukhanovsky
    • 1
  1. 1.ITMO UniversitySaint PetersburgRussian Federation

Personalised recommendations