Advertisement

Integrability and Non Integrability of Some n Body Problems

  • Thierry CombotEmail author
Chapter
Part of the Mathematics for Industry book series (MFI, volume 23)

Abstract

We prove the non integrability of the colinear 3 and 4 body problem, for any positive masses. To deal with resistant cases, we present strong integrability criterions for 3 dimensional homogeneous potentials of degree \(-1\), and prove that such cases cannot appear in the 4 body problem. Following the same strategy, we present a simple proof of non integrability for the planar n body problem. Eventually, we present some integrable cases of the n body problem restricted to some invariant vector spaces.

Keywords

Morales-Ramis theory Homogeneous potential Central configurations Differential Galois theory Integrable systems 

References

  1. 1.
    Bruns H (1887) Acta Math 11 Google Scholar
  2. 2.
    Poincaré H (1890) Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13:A3–A270Google Scholar
  3. 3.
    Julliard Tosel E (1999) Non-intégrabilité algébrique et méromorphe de problèmes de n corpsGoogle Scholar
  4. 4.
    Morales-Ruiz J, Simon S (2009) On the meromorphic non-integrability of some \(N\)-body problems. Discret Contin Dyn Syst (DCDS-A) 24:1225–1273Google Scholar
  5. 5.
    Boucher D (2000) Sur la non-intégrabilité du probleme plan des trois corps de masses égalesa un le long de la solution de lagrange. CR Acad Sci Paris 331:391–394MathSciNetCrossRefGoogle Scholar
  6. 6.
    Tsygvintsev A (2007) On some exceptional cases in the integrability of the three-body problem. Celest Mech Dyn Astron 99:23–29MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Nomikos D, Papageorgiou V (2009) Non-integrability of the anisotropic stormer problem and the isosceles three-body problem. Physica D: Nonlinear Phenom 238:273–289MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Albouy A, Kaloshin V (2012) Finiteness of central configurations of five bodies in the plane. Ann Math 176:535–588MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Morales-Ruiz J, Ramis J, Simó C (2007) Integrability of Hamiltonian systems and differential Galois groups of higher variational equations. Annales scientifiques de l’Ecole normale supérieure 40:845–884MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Combot T (2013) A note on algebraic potentials and Morales-Ramis theory. Celest Mech Dyn Astron 1–22. doi: 10.1007/s10569-013-9470-2 Google Scholar
  11. 11.
    Din MSE (2003) Raglib: a library for real algebraic geometry. http://www-calfor.lip6.fr/safey/RAGLib/
  12. 12.
    Bostan MS-E-D.A, Combot T (2014) Computing necessary integrability conditions for planar parametrized homogeneous potentials. In: ISSAC 2014Google Scholar
  13. 13.
    Moulton F (1910) The straight line solutions of the problem of n bodies. Ann Math 12:1–17MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Roberts GE (1999) A continuum of relative equilibria in the five-body problem. Physica D: Nonlinear Phenom 127:141–145MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hampton M, Moeckel R (2006) Finiteness of relative equilibria of the four-body problem. Inventiones Mathematicae 163:289–312MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Combot T (2011) Integrable homogeneous potentials of degree \(-\)1 in the plane with small eigenvalues, arXiv:1110.6130
  17. 17.
    Combot T (2013) Integrability conditions at order \(2\) for homogeneous potentials of degree \(-\)1, Non-linearity, vol 26Google Scholar
  18. 18.
    Combot T, Koutschan C (2012) Third order integrability conditions for homogeneous potentials of degree \(-\)1. J Math Phys 53Google Scholar
  19. 19.
    Pacella F (1987) Central configurations of the n-body problem via equivariant morse theory. Arch Ration Mech Anal 97:59–74MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IMBUniversié de BourgogneDijon CedexFrance

Personalised recommendations