Skip to main content

Utilization of Biomaterials as Soil Amendments and Crop Protection Agents in Integrated Nematode Management

  • Chapter
  • First Online:
Plant, Soil and Microbes

Abstract

Phytonematodes, or plant-parasitic nematodes, are considered to be among the most important economic pathogens around the world. Certain methods have been developed and used to manage plant-parasitic nematodes, with varying levels of success, but chemical control certainly was and remains the most common approach. However, at the same time, because of the adverse effects of chemical pesticides, it was necessary to find alternative substances that could be used in integrated management programs. One of these alternatives is the use of biomaterials, which have attracted the attention of researchers, who have examined their use as soil amendments. Marine organisms, which are plentiful natural sources of chitin and came directly after cellulose, have proved highly effective in fighting phytonematodes under certain conditions. On the other hand, mushrooms are a macro fungus and have been cultivated in China since ancient times and used for therapeutic and nutritional purposes. Furthermore, in the past three decades, many reports have shown that both mushrooms and spent mushrooms have nematicidal effects on various genera of plant-parasitic nematodes. Strategies that, depending on the soil, make use of natural materials, especially chitin, chitinous materials, mushrooms, and spent mushrooms, have been very successful. The application of these materials to soil increases microorganism proliferation and promotes the release of certain compounds that have antagonistic effects on plant nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abol Hassan MA, Rouf R, Tiralongo E, May TW, Tiralongo J (2015) Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 16:7802–7838

    Article  CAS  Google Scholar 

  • Adedokun OM, Orluchukwu JA (2013) Pineapple: organic production on soil amended with spent mushroom substrate. Agr Biol J N Am 4:590–593

    Google Scholar 

  • Akpaja EO, Okhuoya JA, Ehwerheferere BA (2005) Ethnomycology and indigenous uses of mushrooms among the Bini-speaking people of Nigeria: a case study of Aihuobabekun Community near Benin City, Nigeria. Int J Med Mushrooms 7:373–374

    Article  Google Scholar 

  • Alborés S, Bustamante MJ, Fraguas LF, Cerdeiras MP (2014) Proteins from Punctularia atropurpurascens with biotechnological applications. Nat Res 5:915–925

    Google Scholar 

  • Anke H, Sterner O (1997) Nematicidal metabolites from higher fungi. Curr Org Chem 1:361–374

    CAS  Google Scholar 

  • Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230

    CAS  Google Scholar 

  • Arthur E, Cornelis W, Razzaghi F (2012) Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity. Compost Sci Util 20:215–221

    Article  CAS  Google Scholar 

  • Aslam S, Saifullah (2013) Organic management of root knot nematodes in tomato with spent mushroom compost. Sarhad J Agric 29:63–69

    Google Scholar 

  • Azevedo RS, Ávila CLS, Souza Dias E, Bertechini AG, Schwan RF (2009) Utilization of the spent substrate of Pleurotus sajorcaju mushroom in broiler chicks ration and the effect on broiler chicken performance. Acta Sci Anim Sci 31:139–144

    CAS  Google Scholar 

  • Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, Minami S, Okamoto Y (2015) Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 6:104–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badawy MEI, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohyd Chem 2011:29

    Article  CAS  Google Scholar 

  • Barker KR, Koenning SR (1998) Developing sustainable systems for nematode management. Annu Rev Phytopathol 36:165–205

    Article  CAS  PubMed  Google Scholar 

  • Barron GL, Thorn RG (1987) Destruction of nematodes by species of Pleurotus. Can J Bot 65:774–778

    Article  Google Scholar 

  • Baskaran S, Bolan NS, Rahman A, Tillman RW (1996) Effect of exogenous carbon on the sorption and movement of atrazine and 2,4-D by soils. Austr J Soil Res 34:609–622

    Article  CAS  Google Scholar 

  • Bélair G, Tremblay N (1995) The influence of chitin-urea amendments applied to an organic soil on a Meloidogyne hapla population and on the growth of greenhouse tomato. Phytoprotection 76:75–80

    Article  Google Scholar 

  • Bell NI, Watson RN, Sarathchandra SU (2000) Suppression of plant parasitic nematodes in pastoral soils amended with chitin. New Zeal Plant Protec 53:44–47

    CAS  Google Scholar 

  • Bittelli M, Flury M, Campbell GS, Nichols EJ (2001) Reduction of transpiration through foliar application of chitosan. Agr Forest Meteorol 107:167–175

    Article  Google Scholar 

  • Brown JA, Nevilles FJ, Sarathchandra SU, Watson RN, Cox NR (1995) Effects of chitin amendment on plant growth, microbial populations and nematodes in soil. New Zeal Plant Protec 53:1–5

    Google Scholar 

  • Bua-art S (2003) Effect of secondary metabolite of Omphalotus sp. on root-knot nematode (Meloidogyne incognita Chitwood). B.Sc. Special Problem, Department of Plant Pathology, Khon Kaen University, Khon Kaen

    Google Scholar 

  • Bua-art S (2007) Ribosomal DNA sequences of luminescent mushroom and effect of its bioactive compounds against the root-knot nematode (Meloidogyne incognita Chitwood). M.Sc. thesis, Graduate School, Khon Kaen Universitiy, Khon Kaen

    Google Scholar 

  • Bua-art S, Saksirirat W, Hiransalee A, Kanokmedhakul S, Lekphrom R (2011) Effect of bioactive compound from luminescent mushroom (Neonothopanus nambi Speg.) on root-knot nematode (Meloidogyne incognita Chitwood) and non-target organisms. KKU Res J 16:331–341

    Google Scholar 

  • Buchel E, Martini U, Mayer A, Anke H, Sterner O (1998) Omphalotins B, C and D, nematicidal cylopeptides from Omphalotus olearius: absolute configuration of omphalotin A. Tetrahedron 54:5345–5352

    Article  CAS  Google Scholar 

  • Celik Y, Peker K (2009) Benefit/cost analysis of mushroom production for diversification of income in developing countries. Bulg J Agric Sci 15:228–237

    Google Scholar 

  • Chang ST (1999) World production of cultivated edible and mushrooms in 1997 with emphasis on Lentinus edodes (Berk.) Sing, in China. Int J Med Mushroom 1:291–300

    Article  Google Scholar 

  • Chang ST, Buswell JA (1996) Mushroom nutriceuticals. World J Microbiol Biotechnol 12:473–476

    Article  CAS  PubMed  Google Scholar 

  • Chang ST, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC, Boca Raton

    Book  Google Scholar 

  • Cheba BA (2011) Chitin and chitosan: marine biopolymers with unique properties and versatile applications. Global J Biotechnol Biochem Res 6:149–153

    Google Scholar 

  • Chen J, Abawi GS, Zuckerman BM (1999) Suppression of Meloidogyne hapla and its damage to lettuce grown in a mineral soil amended with chitin and biocontrol organisms. Supp J Nematol 31:719–725

    CAS  Google Scholar 

  • Chen JT, Huang JW (2010) Antimicrobial activity of edible mushroom culture filtrates on plant pathogens. Plant Pathol Bull 19:261–270

    Google Scholar 

  • Chen SJ, Chen NT, Wang SH, Hsu JC, Ding WH, Kuo-Huang LL, Huang RN (2009) Insecticidal action of mammalian galectin-1 against diamond back moth (Plutella xylostella). Pest Manage Sci 65:923–930

    Article  CAS  Google Scholar 

  • Cheung PCK (2010) The nutritional and health benefits of mushrooms. Nutr Bull 35:292–299

    Article  Google Scholar 

  • Cheung YH, Sheridan CM, Lo ACY, Lai WW (2012) Lectin from Agaricus bisporus inhibited S phase cell population and akt phosphorylation in human RPE cells. Invest Ophthalmol Vis Sci 53:7469–7475

    Article  CAS  PubMed  Google Scholar 

  • Chitwood DJ (2004) Phytochemical based strategies for nematode control. Annu Rev Phytopathol 40:221–249

    Article  CAS  Google Scholar 

  • Coelho JS, Santos NDL, Napoleão TH, Gomes FS, Ferreira RS, Zingali RB, Coelho LCBB, Leite SP, Navarro DMAF, Paiva PMG (2009) Effect of Moringa oleifera lectin on development and mortality of Aedesa egypti larvae. Chemosphere 77:934–938

    Article  CAS  PubMed  Google Scholar 

  • Cretoiu MS, Kielak AM, Schluter A, Elsas JD (2014) Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing. Soil Biol Biochem 76:5–11

    Article  CAS  Google Scholar 

  • Croteau R, Gurkewitz S, Johnson MA, Fisk HJ (1987) Monoterpene and diterpene biosynthesis in lodgepole pine saplings infected with Ceratocystis clavigera or treated with carbohydrate elicitors. Plant Physiol 85:1123–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Assunção LS, da Luz JMR, da Silva MCS, Vieira PAF, Bazzolli DMS, Vanetti MC, Kasuya MCM (2012) Enrichment of mushrooms: an interesting strategy for the acquisition of lithium. Food Chem 134:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • De Jin R, Suh J, Park RD, Kim YW, Krishnan HB, Kil Yong K (2005) Effect of chitin compost and broth on biological control of Meloidogyne incognita on tomato (Lycopersicon esculentum Mill). Nematology 7:125–132

    Article  CAS  Google Scholar 

  • De Souza DF, Da Costa SC, Dacome AS, De Souza CGM, Bracht A, Peralta RM (2011) Pentachlorophenol removal by Pleurotus pulmonarius in submerged cultures. Braz Arch Biol Technol 54:357–362

    Article  CAS  Google Scholar 

  • Ding X, Hou Y, Hou W (2012) Structure feature and antitumor activity of a novel polysaccharide isolated from Lactarius deliciosus Gray. Carbohydr Polymer 89:397–402

    Article  CAS  Google Scholar 

  • Domard A (1996) Some physico-chemical and structural basis for applicability of chitin andchitosan. In: Stevens WF, Rao MS, Chandrkrachang S (eds) Chitin and chitosan. Asian Institute of Technology, The proceeding of the second Asia pacific symposium, Thailand, Bankok. pp 1–12

    Google Scholar 

  • Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and application. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  • Eggen T (1999) Application of fungal substrate from commercial mushroom production-Pleurotus ostreatus-for bioremediation of creosote contaminated soil. Int Biodeterior Biodegradation 44:117–126

    Article  CAS  Google Scholar 

  • El Hassni M, El Hadrami A, Daayf F, Chérif M, Ait Barka E, El Hadrami I (2004) Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defense reactions in date palm roots. Phytopathol Mediterr 43:195–204

    Google Scholar 

  • Elmastas M, Isıldak O, Turkekul I, Temur N (2007) Determination of antioxidant activity and compounds in wild edible mushrooms. J Food Compos Anal 20:337–345

    Article  CAS  Google Scholar 

  • El-Sherbiny AA, Awd Allah SFA (2014) Management of the root-knot nematode, Meloidogyne incognita on tomato plants by pre-planting soil biofumigation with harvesting residues of some winter crops and waste residues of oyster mushroom cultivation under field conditions. Egypt J Agronematol 13:189–202

    Google Scholar 

  • Engler M, Anke T, Sterner O (1998) Production of antibiotics by Collybia nivalis, Omphalotus olearius, a Favolaschia and a Pterula species on Natural Substrates. Z Naturforsch 53:318–324

    CAS  Google Scholar 

  • Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J (2012) Proteins of higher fungi-from forest to application. Trends Biotechnol 30:259–273

    Article  CAS  PubMed  Google Scholar 

  • Fermor T, Watts N, Duncombe T, Brooks R, McCarthy A, Semple K, Reid B (2000) Bioremediation: use of composts and composting technologies. In: Science and cultivation of edible fungi. Proceedings of the 15th International congress on the science and cultivation of edible fungi, 15–19 May, Maastricht, The Netherlands. pp 833–839

    Google Scholar 

  • Ferreira RS, Napoleão TH, Santos AFS, Sá RA, Carneiro-da-Cunha MG, Morais MMC, Silva-Lucca RA, Oliva MLV, Coelho LCBB, Paiva PMG (2011) Coagulant and antibacterial activities of the water-soluble seed lectin from Moringa oleifera. Lett Appl Microbiol 53:186–192

    Article  CAS  PubMed  Google Scholar 

  • Gent MPN, Elmer WH, Stoner KA, Fernando FJ, LaMondia JA (1998) Growth, yield and mushroom nutrition of potato in fumigated or non-fumigated soil amended with spent mushroom compost and straw mulch. Compost Sci Util 6:45–56

    Article  Google Scholar 

  • Gent MPN, LaMondia JA, Ferrandino FJ, Elmer WH, Stoner KA (1999) The influence of compost amendment or straw mulch on the reduction of gas exchange in potato by Verticillium dahliae and Pratylenchus penetrans. Plant Dis 83:371–376

    Article  Google Scholar 

  • Gooday GW (1990) The ecology of chitin degradation. Adv Microb Ecol 11:387–419

    Article  CAS  Google Scholar 

  • Gortari MC, Hours RA (2013) Biotechnological processes for chitin recovery out of crustacean waste: a mini-review. Electron J Biotechnol 16:4

    Google Scholar 

  • Groudev SN, Bratcova SG, Komnitsas K (1999) Treatment of waters polluted with radioactive elements and heavy metals by means of a laboratory passive system. Min Eng 12:261–270

    Article  CAS  Google Scholar 

  • Hallmann J, Rodriguez-Kabana R, Kloepper JW (1999) Chitin-mediated changes in bacterial communities of the soil rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31:551–560

    Article  CAS  Google Scholar 

  • Heydari R, Pourjam E, Goltapeh EM (2006) Antagonistic effect of some species of Pleurotus on the root-knot nematode, Meloidogyne javanica in vitro. Plant Pathol J 5:173–177

    Article  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Huang JW, Huang HC (2000) A formulated container medium suppressive to Rhizoctonia damping-off of cabbage. Bot Bull Acad Sin 41:49–56

    Google Scholar 

  • Hussain F, Shaukat SS, Abid M, Farzana AM (2013a) Control of some important soil-borne fungi by chitin associated with chilli (Capsicum annuum L.) in lower Sindh, Pakistan. Sci Tech Dev 32:228–234

    Google Scholar 

  • Hussain F, Shaukat SS, Abid M, Usman F, Akbar M (2013b) Control of Meloidogyne javanica and Fusarium solani in chilli (Capsicum annuum L.) with the application of chitin. Pak J Nematol 31:165–170

    Google Scholar 

  • Ibrahim IKA, Awd-Allah SFA, Handoo ZA (2014) Life cycle and control of cyst nematode Heterodera goldni on rice in Egypt. Int J Nematol 24:11–17

    Google Scholar 

  • Jasrotia N, Parashar B, Gupta N (2012) Comparative study of extracts of Ganoderma lucidum for anthelmintic and antibacterial activity. Am J Pharm Tech Res 2:462–468

    Google Scholar 

  • Jayakumar J, Ramakrishnan S, Rajendran G (2004) Management of root-knot nematode, Meloidogyne incognita using marine waste materials in tomato. J Ecobiol 16:69–70

    Google Scholar 

  • Jayakumar R, Chennazhi KP, Muzzarelli RAA, Tamura H, Nair SV, Selvamurugan N (2010a) Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydr Polym 79:1–8

    Article  CAS  Google Scholar 

  • Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010b) Biomedical applications of chitin and chitosan nanomaterials-A short review. Carbohydr Polym 82:227–232

    Article  CAS  Google Scholar 

  • Jayakumar R, Reis RL, Mano JF (2006) Chemistry and applications of phosphorylated chitin and chitosan. e-Poly 35:1–16

    Google Scholar 

  • Jayakumar T, Thomas PA, Geraldine P (2007) Protective effect of an extract of the oyster mushroom, Pleurotus ostreatus, on antioxidants of major organs of aged rats. Exp Gerontol 42:183–191

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar T, Thomas PA, Sheu JR, Geraldine P (2011) In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food Res Int 44:851–861

    Article  CAS  Google Scholar 

  • Jonathan SG, Fasidi IO (2005) Antimicrobial activities of some selected Nigerian mushrooms. Afr J Biomed Res 8:83–87

    Google Scholar 

  • Jonathan SG, Kigigha L, Ohima E (2007) Antagonistic effects of some Nigerian higher fungi against selected pathogenic microorganism. Am Euro J Agri Environ Sci 2:363–368

    Google Scholar 

  • Kalaiarasan P, Lakshmanan P, Rajendran G, Samiyappan R (2006) Chitin and chitinolytic biocontrol agents for the management of root-knot nematode, Meloidogyne arenaria in groundnut (Arachis hypogaea L.) cv. Co3. Ind J Nematol 6:200–205

    Google Scholar 

  • Kalaiarasan P, Lakshmanan PL, Samiyappan R (2008) Organic crab shell chitin-mediated suppression of root-knot nematode, Meloidogyne arenaria in groundnut. Ind J Nematol 38:196–202

    CAS  Google Scholar 

  • Kao PM, Chen CI, Huang SC, Lin KM, Chang YC, Liu YC (2009) Preparation of fermentation-processed chitin and its application in chitinase affinity adsorption. Process Biochem 44:343–348

    Article  CAS  Google Scholar 

  • Karagozlu MZ, Kim SK (2014) Anticancer effects of chitin and chitosan derivatives. Adv Food Nutr Res 72:215–225

    Article  PubMed  Google Scholar 

  • Karimi J, Paquereau L, Fournier D, Haubruge E, Francis F (2007) Effect of a fungal lectin from Xerocomus chrysenteron (XCL) on the biological parameters of Myzus persicae. Comm Agr Appl Biol Sci 72:629–638

    Google Scholar 

  • Kaul VK, Chhabra HK (1993) Control of Meloidogyne incognita by incorporation of organic wastes. Plant Dis Res 8:35–41

    Google Scholar 

  • Keleş A, Koca İ, Gençcelep H (2011) Antioxidant properties of wild edible mushrooms. J Food Process Technol 2:2–6

    Google Scholar 

  • Khalil MS, Badawy MEI (2012) Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode, Meloidogyne incognita. Plant Protect Sci 48:170–178

    CAS  Google Scholar 

  • Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Rodriguez-Ubana R, Zehnder GW, Murphy JF, Sikora E, Fernández C (1999) Plant root-bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases. Austr Plant Pathol 28:21–26

    Article  Google Scholar 

  • Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H (1985) Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol 77:544–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Korayem AM, Mahmoud MAY, Moawad MMM (2008) Effect of chitin and abamectin on Meloidogyne incognita infesting rapseed. J Plant Prot Res 48:365–370

    Article  Google Scholar 

  • Krajewska B (2004) Application of chitin and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microbiol Technol 35:126–139

    Article  CAS  Google Scholar 

  • Krishnaveni B, Ragunathan R (2015) Extraction and characterization of chitin and chitosan from Aspergillus terreus sps, synthesis of their bionanocomposites and study of their productive applications. J Chem Pharm Res 7:115–132

    CAS  Google Scholar 

  • Kuchitsu K, Kosaka H, Shiga T, Shibuya N (1995) EPR evidence for generation of hydroxylradical triggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells. Protoplasma 188:138–142

    Article  CAS  Google Scholar 

  • Kuo WS, Regan RW (1999) Removal of pesticides from rinsate by adsorption using agricultural residuals as medium. J Environ Sci Health 34:431–447

    Article  Google Scholar 

  • Kurita K (2001) Controlled functionalization of polysaccharide chitin. Prog Polym Sci 26:1921–1971

    Article  CAS  Google Scholar 

  • Kurita K (2006) Chitin and chitosan: functional biopolymers from marine custaceans. Mar Biotech 8:203–226

    Article  CAS  Google Scholar 

  • La Mondia JA, Gent MPN, Ferrandino FJ, Elmer WH (1999) Effect of compost amendment or straw mulch on potato early dying disease. Plant Dis 83:361–366

    Article  Google Scholar 

  • Lafontaine JP, Benhamou N (1996) Chitosan treatment: An emerging strategy for enhancingresistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp.radicis lycopersici. Biocontrol Sci Technol 6:111–124

    Article  Google Scholar 

  • Lee VF (1975) Solution and shear properties of chitin and chitosan. Xerox University Microfilms, Ann Arbor, MI

    Google Scholar 

  • Lindequist U, Niedermeyer TH, Jülich WD (2005) The pharmacological potential of mushrooms. Evid base Compl Alternative Med 2:285–299

    Article  Google Scholar 

  • Machado AMB, Souza Dias E, Santos EEC, Freitas RTF (2007) Spent mushroom substrate of Agaricus blazei in broiler chicks diet. Revis Bras Zootecnia 36:1113–1118

    Article  Google Scholar 

  • Mack I, Andreas H, Marlene B, Julius K, Katharina JF, Alexander W, Mall MA, Hart D (2015) The role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases. Mol Cell Pediatr 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques ELS, Martos ET, Souza RJ, Silva R, Zied DC, Souza Dias E (2014) Spent mushroom compost as a substrate for the production of lettuce seedlings. J Agr Sci 6:138–143

    Google Scholar 

  • Meyer LF, Huettel RN, Liu XZ, Humber RA, Jaba J, Nitao K (2004) Activity of fungal culture filtrates against soybean cyst nematode and root knot nematode egg hatch and juvenile motility. Nematology 6:23–32

    Article  Google Scholar 

  • Mondal MMA, Malek MA, Puteh AB, Ismail MR, Ashrafuzzaman M, Naher L (2012) Effect of foliar application of chitosan on growth and yield in okra. Aust J Crop Sci 6:918–921

    CAS  Google Scholar 

  • Mondal T, Some R, Dutta S (2013) Studies on antioxidant and antimicrobial properties of some common mushrooms. J Tod Biol Sci Res Rev 2:60–67

    Google Scholar 

  • Morais MH, Ramos AC, Matos N, Santos-Oliveira EJ (2000) Note. Production of shiitake mushroom (Lentinus edodes) on ligninocellulosic residues. Food Sci Technol Int 6:123–128

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (2009) Chitin and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, El Mehtedi M, Mattioli-Belmonte M (2014) Emerging biomedical applications of nano-chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources. Mar Drug 12:5468–5502

    Article  CAS  Google Scholar 

  • Nagahama H, New R, Jayakumar S, Koiwa T, Furuike H, Tamur J (2008) Novel biodegradablechitin membranes for tissue engineering. Carbohyd rPolymer 73:295–302

    Article  CAS  Google Scholar 

  • Neuberger A, Pitt Rivers RV (1939) The hydrolysis of glucosaminides by an enzyme in Helix pomatia. Biochem J 33:1580–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) Application of chitosan for improvement of quality and shelf life of foods: A review. J Food Sci 72:87–100

    Article  CAS  Google Scholar 

  • No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72

    Article  CAS  PubMed  Google Scholar 

  • Noling JW, Becker JO (1994) The challenge of research and extension to define and implement alternatives to methyl bromide. J Nematol 26:573–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odier A (1823) Memoire sur la composition chemique des parties cornees des insectes. Mem Soc Hist Nat de Paris 1:29–42

    Google Scholar 

  • Oliver JM, Delmas J (1987) Vers la maîtrise des champignons comestibles. Biofutur 1:23–41

    Google Scholar 

  • Orhan I, Üstün O (2011) Determination of total phenol content, antioxidant activity andacetylcholinesterase inhibition in selected mushrooms from Turkey. J Food Compos Anal 24:386–390

    Article  CAS  Google Scholar 

  • Öztürk M, Tel G, Öztürk FA, Duru ME (2014) The cooking effect on two edible mushrooms in anatolia: Fatty acid composition, total bioactive compounds, antioxidant and anticholinesterase activities. Rec Nat Prod 8:189–194

    Google Scholar 

  • Palizi P, Mohammadi GE, Pourjam E, Safaie N (2009) Potential of oyster mushrooms for the biocontrol of sugar beet nematode Heterodera schachtii. J Plant Protect Res 49:27–33

    Article  Google Scholar 

  • Park BK, Kim MM (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11:5152–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poppe J (2000) Use of the agricultural waste materials in the cultivation of mushrooms. Mushroom Sci 15:3–23

    Google Scholar 

  • Rabinovich M, Figlas D, Delmastro S, Curvetto N (2007) Copper-and zinc-enriched mycelium of Agaricus blazei Murril: Bioaccumulation and Bioavailability. J Med Food 10:175–183

    Article  CAS  PubMed  Google Scholar 

  • Radwan MA, Farrag SAA, Abu-Elamayem MM, Ahmed NS (2012) Extraction, characterization and nematicidal activity of chitin and chitosan derived from shrimp shell wastes. Biol Fertil Soils 48:463–468

    Article  CAS  Google Scholar 

  • Raj H, Kapoor IJ (1997) Possible management of Fusarium wilt of tomato by soil amendments with composts. Ind Phytopathol 50:387–395

    Google Scholar 

  • Rajkumar M, Lee KJ, Freitas H (2008) Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper. South Afr J Bot 74:268–273

    Article  CAS  Google Scholar 

  • Ramírez MÁ, Rodríguez AT, Alfonso L, Peniche C (2010) Chitin and its derivatives as biopolymers with potential agricultural applications. J Biotecnol Aplica 27:270–276

    Google Scholar 

  • Ranganathan DS, Selvaseelan DA (1997) Effect of mushroom spent rice straw compost on soil physical and physico-chemical properties of alluvial and laterite. Madras Agr J 84:15–19

    Google Scholar 

  • Ranzani MR, Sturion GL (1998) Amino acid composition evaluation of Pleurotus spp. cultivated in banana leaves. Arch Latinoam Nutr 48:339–348

    CAS  PubMed  Google Scholar 

  • Rathke T, Hudson SM (1993) Determination of the degree of N-Deacteylation in chitin and chitosan as well astheir Monomer sugar ratios by near infrared spectroscopy. J Polym Sci Polym Chem 31:749–753

    Article  CAS  Google Scholar 

  • Regina MMG, Elisabeth W, Jamile RR, Jorge LN, Sandra AF (2008) Alternative medium for production of Pleurotus ostreatus biomass and potential antitumor polysaccharides. Bioresour Technol 99:76–82

    Article  CAS  Google Scholar 

  • Rinando M (2006) Chitin and chitosan: properties and application. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Roberts P, Jones DL (2012) Microbial and plant uptake of free amino sugars in grassland soils. Soil Biol Biochem 49:139–149

    Article  CAS  Google Scholar 

  • Rodriguez-Kabana R, Morgan-Jones G, Ownley GB (1984) Effects on chitin amendments to soil on Heterodera glycines, microbial populations and colonization of cysts by fungi. Nematropica 14:10–25

    Google Scholar 

  • Rouget C (1859) Des substances amylacees dans le tissue des animux, specialement les Articules (Chitine). Compt Rendus Chem 48:792–795

    Google Scholar 

  • Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 40:597–636

    Article  Google Scholar 

  • Saad ASA, Massoud MA, Ibrahim HS, Khalil MS (2011) Management study for the root-knot nematodes, Meloidogyne incognita on tomatoes using fosthiazate and Arbiscular Mycorrhiza Fungus. J Adv Agric Res 16:137–147

    Google Scholar 

  • Saad ASA, Massoud MA, Ibrahim HS, Khalil MS (2012) Activity of nemathorin, natural product and bioproducts against root-knot nematodes on tomatoes. Arch Phytopathol Plant Protect 45:955–962

    Article  CAS  Google Scholar 

  • Sánchez C (2004) Modern aspects of mushrooms culture technology. Appl Microbiol Biotechnol 64:756–762

    Article  PubMed  CAS  Google Scholar 

  • Sandford PA (2004) Advances in chitin science. Carbohydr Polym 56:59–95

    Article  CAS  Google Scholar 

  • Shang Y, Ding F, Xiao L, Deng H, Du Y, Shi X (2014) Chitin-based fast responsive pH sensitive microspheres for controlled drug release. Carbohydr Polym 15:413–418

    Article  CAS  Google Scholar 

  • Sharma VP (1994) Potential of Pleurotus sajor-caju for biocontrol of Aphelenchoides camposticola in Agaricus bisporus cultivation. Mushroom Res 3:15–20

    Google Scholar 

  • Sharp RG (2013) A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3:757–793

    Article  CAS  Google Scholar 

  • Shojaosadati SA, Siamak E (1999) Removal of hydrogen sulfide by the compost biofilter with sludge of leather industry. Resour Conserv Rec 27:139–144

    Article  Google Scholar 

  • Shuman LM (1998) Effect of organic waste amendments on cadmium and lead in soil fractions of two soils. Commun Soil Sci Plant Anal 29:2939–2952

    Article  CAS  Google Scholar 

  • Shuman LM (1999a) Organic waste amendments effects on zinc fractions of two soils. J Environ Qual 28:1442–1447

    Article  CAS  Google Scholar 

  • Shuman LM (1999b) Effect of organic waste amendments on zinc fractions of two soils. Soil Sci 164:197–205

    Article  CAS  Google Scholar 

  • Silva MCS, Naozuka J, Oliveira PV, Vanetti MCD, Bazzolli DMS, Costa NMB (2010) In vivo biovailability of selenium in enriched Pleurotus ostreatus mushrooms. Metallo 2:162–166

    Article  CAS  Google Scholar 

  • Songkroah C, Nakbanpote W, Thiravetyan P (2004) Recovery of silver–thiosulfate complexes with chitin. Process Biochem 39:1553–1559

    Article  CAS  Google Scholar 

  • Spiegel Y, Cohn E, Chet I (1989) Use of chitin for controlling Heterodera avenae and Tylenchulus semipenetrans. J Nematol 21:419–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sterner O, Etzel W, Mayer A, Anke H (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius I. Fermentation and biological activity. Nat Prod Lett 10:33–38

    Article  CAS  Google Scholar 

  • Stoner KA, Ferrandino FJ, Gent MPN, Elmer WH, LaMondia JA (1996) Effects of straw mulch, spent mushroom compost, and fumigation on the density of Colorado potato beetles (Coleoptera: Chrysomelidae) in potatoes. J Econ Entomol 89:1267–1280

    Article  Google Scholar 

  • Suganda T (1999) Natural chitinous amendment for controlling root-knot nematode (Meloidogyne spp.) of tomato. J Agricul 10:17–19

    Google Scholar 

  • Tamura H, Furuike T, Nair SV, Jayakumar R (2011) Biomedical applications of chitin hydrogel membranes and scaffolds. Carbohydr Polym 84:820–824

    Article  CAS  Google Scholar 

  • Thorn RG, Barron GL (1984) Carnivorous mushrooms. Science 224:67–78

    Article  Google Scholar 

  • Thorn RG, Moncalvo JM, Reddy CA, Vilgalys R (2000) Phylogenetic analyses and the distribution of nematophagy support a monophyletic Pleurotaceae within the polyphyletic pleurotoid-lentinoid fungi. Mycologia 92:241–252

    Article  Google Scholar 

  • Trigueros V, Lougarre A, Ali-Ahmed D, Rahbé Y, Guillot J, Chavant L, Fournier D, Paquereau L (2003) Xerocomus chrysenteron lectin: identification of a new pesticidal protein. Biochim Biophys Acta 1621:292–298

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay S (2000) Management of chilli leaf and stem necrosis caused by tomato spotted wilt virus. J Mycol Plant Pathol 30:159–162

    Google Scholar 

  • Vasyukova NI, Zinoveva LI, Iĺinskaya EA, Perekhod GI, Chalenko NG, Iĺina AV, Varlamov VP, Ozeretskovskaya OL (2001) Modulation of plant resistance to diseases bywater-soluble chitosan. Appl Biochem Microbiol 37:103–109

    Article  CAS  Google Scholar 

  • Verma RR (1993) Effect of different materials on the population of root-knot nematode, Meloidogyne incognita, affecting tomato crop. Ind J Nematol 23:135–136

    Google Scholar 

  • Vieira PAF, Gontijo DC, Vieira BC, Fontes EAF, Soares de Assunção L, Leite JPV, Oliveira MGDA, Kasuya MCM (2013) Antioxidant activities, total phenolics and metal contents in Pleurotus ostreatus mushrooms enriched with Iron, Zinc or Lithium. LWT Food Sci Technol 54:421–425

    Article  CAS  Google Scholar 

  • Wan Rosli WI, Nor Maihiza MS, Raushan M (2015) The ability of oyster mushroom in improving nutritional composition, β-glucan and textural properties of chicken frankfurter. Int Food Res J 22:311–317

    CAS  Google Scholar 

  • Wang M, Veronique T, Laurent P, Louis C, Anddidier F (2002) Proteins as active compounds involved in insecticidal activity of mushroom fruit bodies. J Econ Entomol 95:603–607

    Article  CAS  PubMed  Google Scholar 

  • Wang SX, Zhang GQ, Zhao S, Xu F, Zhou Y, Geng XL, Liu Y, Wang HX (2012) Purification and characterization of a novel lectin with antiphytovirus activities from the wild mushroom Paxillus involutus. Protein Pept Lett 20:767–774

    Article  CAS  Google Scholar 

  • Wani BA, Bodha RH, Wani AH (2010) Nutritional and medicinal importance of mushrooms. J Med Plant Res 4:2598–2604

    Google Scholar 

  • Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25:170–179

    Article  CAS  Google Scholar 

  • Xiang HQ, Feng ZX (2000) Effect of Pleurotus ostreatus on dynamics of Meloidogyne arenaria population and control effectiveness. Sci Agr Sinica 34:27–34

    Google Scholar 

  • Yen MT, Mau JL (2007) Selected physical properties of chitin prepared from shiitake stipes. Food Sci Technol 40:558–563

    CAS  Google Scholar 

  • Yohalem DS, Nordheim EV, Andrews JH (1996) The effect of water extracts of spent mushroom compost on apple scab in the field. Phytopathology 86:914–922

    Article  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drug 13:1133–1174

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to Prof. (Dr.) Abdel Fattah S. A. Saad, Plant Protection Department, Faculty of Agriculture, Saba-Basha, Alexandria University, for his support and assistance. Deep thanks go to Dr. Amr Ali El-Sherbiny, Nematology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Alexandria, Egypt, for discussing his recent research. Also, many thanks go to Dr. Sherin Fadel Awed Allah, Director of the Mushroom Production Unit, Nematology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Alexandria, Egypt, for providing valuable data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khalil, M.S. (2016). Utilization of Biomaterials as Soil Amendments and Crop Protection Agents in Integrated Nematode Management. In: Hakeem, K., Akhtar, M., Abdullah, S. (eds) Plant, Soil and Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-27455-3_11

Download citation

Publish with us

Policies and ethics