Adaptive Survey Design Using Structural Characteristics of the Social Network

  • Jarosław Jankowski
  • Radosław Michalski
  • Piotr Bródka
  • Przemysław Kazienko
  • Sonja Utz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9471)


The implementation of new methods that increase the quality and effectiveness of research processes became an unique advantage to online social networking sites. Conducting accurate and meaningful surveys is one of the most important facets for research, wherein the representativeness of selected online samples is often a challenge and the results are hardly generalizable. This study presents a proposal and analysis based on surveys with representativeness targeted at network characteristics. Hence, the main goal of this study is to follow the measures’ computed for the main network during survey and focusing on acquiring similar distributions for sample.


Social network analysis Network sampling Adaptive surveys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbasi, M.-A., Chai, S.-K., Liu, H., Sagoo, K.: Real-world behavior analysis through a social media lens. In: Yang, S.J., Greenberg, A.M., Endsley, M. (eds.) SBP 2012. LNCS, vol. 7227, pp. 18–26. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  2. 2.
    Ahn, Y.Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th International Conference on World Wide Web, pp. 835–844. ACM (2007)Google Scholar
  3. 3.
    Back, M.D., Stopfer, J.M., Vazire, S., Gaddis, S., Schmukle, S.C., Egloff, B., Gosling, S.D.: Facebook profiles reflect actual personality, not self-idealization. Psychological Science (2010)Google Scholar
  4. 4.
    Couper, M.P., Groves, R.: Moving from prespecified to adaptive survey design. In: Couper, M.P., Traugott, M.W., Lamias, M.J. (eds.) Modernisation of Statistics Production Conference, Stockholm, Sweden (2001). Web Survey Design and Administration, vol. 65(2), pp. 230–253. Public Opinion Quarterly (2009)Google Scholar
  5. 5.
    Deville, J.C., Tillé, Y.: Variance approximation under balanced sampling. Journal of Statistical Planning and Inference 128(2), 569–591 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Frank, O., Snijders, T.: Estimating the size of hidden populations using snowball sampling. Journal of Official Statistics-Stockholm 10, 53–53 (1994)Google Scholar
  7. 7.
    Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: A walk in facebook: Uniform sampling of users in online social networks (2009). arXiv preprint arXiv:0906.0060
  8. 8.
    Groves, R.M., Heeringa, S.G.: Responsive design for household surveys: tools for actively controlling survey errors and costs. Journal of the Royal Statistical Society: Series A (Statistics in Society) 169(3), 439–457 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Heckathorn, D.D.: Extensions of respondent-driven sampling: analyzing continuous variables and controlling for differential recruitment. Sociological Methodology 37(1), 151–207 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jankowski, J., Michalski, R., Bródka, P., Kazienko, P., Utz, S.: Knowledge acquisition from social platforms based on network distributions fitting. Computers in Human Behavior 51(B), 685–693 (2015)CrossRefGoogle Scholar
  11. 11.
    Jankowski, J., Michalski, R., Kazienko, P.: The multidimensional study of viral campaigns as branching processes. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 462–474. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. 12.
    Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics, 79–86 (1951)Google Scholar
  13. 13.
    Lee, S.H., Kim, P.J., Jeong, H.: Statistical properties of sampled networks. Physical Review E 73(1), 016102 (2006)CrossRefGoogle Scholar
  14. 14.
    Maiya, A.S., Berger-Wolf, T.Y.: Online sampling of high centrality individuals in social networks. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 91–98. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  15. 15.
    Michalski, R., Jankowski, J., Brodka, P., Kazienko, P.: The same network-different communities? the multidimensional study of groups in the cyberspace. In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 864–869. IEEE (2014)Google Scholar
  16. 16.
    Rusmevichientong, P., Pennock, D.M., Lawrence, S., Giles, C.L.: Methods for sampling pages uniformly from the world wide web. In: AAAI Fall Symposium on Using Uncertainty Within Computation, pp. 121–128 (2001)Google Scholar
  17. 17.
    Schouten, B., Calinescu, M., Luiten, A., et al.: Optimizing quality of response through adaptive survey designs. Survey Methodology 39(1), 29–58 (2013)Google Scholar
  18. 18.
    Singh, J., Howell, R.D., Rhoads, G.K.: Adaptive designs for likert-type data: An approach for implementing marketing surveys. Journal of Marketing Research, 304–321 (1990)Google Scholar
  19. 19.
    Stumpf, M.P., Wiuf, C., May, R.M.: Subnets of scale-free networks are not scale-free: sampling properties of networks. Proceedings of the National Academy of Sciences of the United States of America 102(12), 4221–4224 (2005)CrossRefGoogle Scholar
  20. 20.
    Thelwall, M.: Social networks, gender, and friending: An analysis of myspace member profiles. Journal of the American Society for Information Science and Technology 59(8), 1321–1330 (2008)CrossRefGoogle Scholar
  21. 21.
    Thompson, S., Seber, G.: Adaptive sampling. Wiley series in probability and statistics Show all parts in this series (1996)Google Scholar
  22. 22.
    Thompson, S.K.: Adaptive sampling in graphs. In: Proceedings of the Section on Survey Methods Research, American Statistical Association, pp. 13–22 (1998)Google Scholar
  23. 23.
    Thompson, S.K.: Adaptive network and spatial sampling. Survey Methodology 37(2), 183–196 (2011)MathSciNetGoogle Scholar
  24. 24.
    Utz, S., Krämer, N.: The privacy paradox on social network sites revisited: The role of individual characteristics and group norms. Cyberpsychology: Journal of Psychosocial Research on Cyberspace 3(2), 2 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jarosław Jankowski
    • 1
  • Radosław Michalski
    • 1
  • Piotr Bródka
    • 1
  • Przemysław Kazienko
    • 1
  • Sonja Utz
    • 2
  1. 1.Department of Computational IntelligenceWrocław University of TechnologyWrocławPoland
  2. 2.Leibniz-Institut für WissensmedienTübingenGermany

Personalised recommendations