Memetic and Opposition-Based Learning Genetic Algorithms for Sorting Unsigned Genomes by Translocations

  • Lucas A. da Silveira
  • José L. Soncco-ÁlvarezEmail author
  • Thaynara A. de Lima
  • Mauricio Ayala-Rincón
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 419)


A standard genetic algorithm (\(\mathcal{G\!A}_{{ \mathrm{S}}}\)) for sorting unsigned genomes by translocations is improved in two different manners: firstly, a memetic algorithm (\(\mathcal{G\!A}_{{ \mathrm{M}}}\)) is provided, which embeds a new stage of local search, based on the concept of mutation applied in only one gene; secondly, an opposition-based learning (\(\mathcal{G\!A}_{{ \mathrm{OBL}}}\)) mechanism is provided that explores the concept of internal opposition applied to a chromosome. Both approaches include a convergence control mechanism of the population using the Shannon entropy. For the experiments, both biological and synthetic genomes were used. The results showed that \(\mathcal{G\!A}_{{ \mathrm{M}}}\)outperforms both \(\mathcal{G\!A}_{{ \mathrm{S}}}\)and \(\mathcal{G\!A}_{{ \mathrm{OBL}}}\)as confirmed through statistical tests.


Sorting permutations Sorting unsigned genomes Genetic algorithms Memetic algorithms Opposition-based learning algorithms 


  1. 1.
    Al-Qunaieer, F.S., Tizhoosh, H.R., Rahnamayan, S.: Opposition based computing - a survey. In: Neural Networks (IJCNN), pp. 1–7. IEEE (2010)Google Scholar
  2. 2.
    Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. J. Comput. Biol. 13(2), 567–578 (2006)Google Scholar
  3. 3.
    Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)Google Scholar
  4. 4.
    Cui, Y., Wang, L., Zhu, D.: A 1.75-approximation algorithm for unsigned translocation distance. J. Comput. Sys. Sci. 73(7):1045–1059 (2007)Google Scholar
  5. 5.
    Cui, Y., Wang, L., Zhu, D., Liu, X.: A (1.5+\(\varepsilon \))-approximation algorithm for unsigned translocation distance. IEEE/ACM Trans. Comput. Biol. Bioinf. 5(1):56–66 (2008)Google Scholar
  6. 6.
    da Silveira, L.A., Soncco-Álvarez, J.L., de Lima, T.A., Ayala-Rincón, M.: Computing translocation distance by a genetic algorithm. In: Acc. Proc, CLEI (2015)Google Scholar
  7. 7.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Durillo, J.J., García-Nieto, J., Nebro, A.J., Coello, C.A., Luna, F., Alba, E.: Multi-objective particle swarm optimizers: an experimental comparison. In: Evolutionary Multi-Criterion Optimization, pp. 495–509. Springer (2009)Google Scholar
  9. 9.
    Hannenhalli, S.: Polynomial-time algorithm for computing translocation distance between genomes. Discrete App. Math. 71(1), 137–151 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Jiang, H., Wang, L., Zhu, B., Zhu, D.: A (1.408+ \(\varepsilon \))-approximation algorithm for sorting unsigned genomes by reciprocal translocations. In: Frontiers in Algorithmics, pp. 128–140. Springer (2014)Google Scholar
  11. 11.
    Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans. Evol. Comput. 9(5), 474–488 (2005)CrossRefGoogle Scholar
  12. 12.
    Moscato, P., Cotta, C.: An introduction to memetic algorithms. Inteligencia Artificial, Revista iberoamericana de Inteligencia Artificial 19, 131–148 (2003)Google Scholar
  13. 13.
    Moscato, P., et al.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program, C3P. Report 826, 1989 (1989)Google Scholar
  14. 14.
    Muñoz, D.M., Llanos, C.H., Coelho, L.S., Ayala-Rincón, M.: Opposition-based shuffled PSO with passive congregation applied to FM matching synthesis. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2775–2781 (2011)Google Scholar
  15. 15.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation, and Intelligent Agents, Web Technologies and Internet Commerce, vol.1, pp. 695–701. IEEE (2005)Google Scholar
  17. 17.
    Wang, L., Zhu, D., Liu, X., Ma, S.: An \(O(n^{2})\) algorithm for signed translocation. J. Comput. Syst. Sci. 70(3), 284–299 (2005)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Zhu, D., Wang, L.: On the complexity of unsigned translocation distance. Theor. Comput. Sci. 352(1), 322–328 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lucas A. da Silveira
    • 1
  • José L. Soncco-Álvarez
    • 1
    Email author
  • Thaynara A. de Lima
    • 3
  • Mauricio Ayala-Rincón
    • 1
    • 2
  1. 1.Departaments of Computer ScienceUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Departaments of Computer Science and MathematicsUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Department of MathematicsUniversidade de Goiás—Campus IIGoiásBrazil

Personalised recommendations