Advertisement

MEMS System-Level Modeling and Simulation in Smart Systems

  • Gerold SchröpferEmail author
  • Gunar Lorenz
  • Arnaud Krust
  • Benoît Vernay
  • Stephen Breit
  • Alexandre Mehdaoui
  • Alessandro Sanginario
Chapter

Abstract

MEMS are miniaturized sensors or actuators and are essential to enabling “smart systems” to interact with their physical environment. These devices add the “ears,” “eyes,” “noses,” and “touch” to these systems. The system-level modeling of MEMS requires considering not only the multi-physical behavior of these devices but also their electronic readout circuitry and packaging. This chapter describes a methodology for MEMS system-level design and its implementation in commercially available software. We introduce the Coventor MEMS+® environment for creating system-aware MEMS models, an approach based on a library of 3-D, high-order parametric finite elements. Model-order reduction techniques are employed to reduce the complexity of the multi degree-of-freedom models, to speed up simulation time and to provide a path for designing MEMS together with electronic hardware. The influence of the package surrounding the MEMS device can be simulated by combining traditional finite element simulations with the new methodology of MEMS+. Finally, we discuss the virtual co-development of embedded software and MEMS hardware.

Keywords

Integrate Circuit Proof Mass Hardware Description Language Integrate Circuit Design Reduction Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Mehner, Modal-superposition-based nonlinear model order reduction for MEMS gyros, in System-Level Modeling of MEMS (Wiley-VCH Verlag GmbH & Co. KGaA, 2013), pp. 291–309Google Scholar
  2. 2.
    M. Dorwarth, S. Kehrberg, R. Maul, R. Eid, F. Lang, B. Schmidt, J. Mehner, Nonlinear model order reduction for high Q MEMS gyroscopes, in 11th International Multi-Conference on Systems, Signals and Devices (2014)Google Scholar
  3. 3.
    T. Mähne, K. Kehr, A. Franke, J. Hauer, B. Schmidt, Creating virtual prototypes of complex micro-electro-mechanical transducers using reduced-order modelling and VHDL-AMS, in Proceedings of the 8th International Forum on Specification and Design Languages (2005)Google Scholar
  4. 4.
    D. Teegarden, G. Lorenz, R. Neul, How to model and simulate microgyroscope systems. IEEE Spectrum 35, 66–75 (1998)CrossRefGoogle Scholar
  5. 5.
    N. Zhou, C.V. Jason, K. Pister, Nodal analysis for MEMS design using SUGAR v0.5, in MSM 98, Technical Proceedings of the 1998 International Conference on Modeling and Simulation of Microsystems (Santa Clara, 1998)Google Scholar
  6. 6.
    M.S. Kranz, J.E. Vandemeer, G.K. Fedder, Hierarchical representation and simulation of micromachined inertial sensors, in MSM98 (Santa Clara, 1998)Google Scholar
  7. 7.
    G. Lorenz, J. Repke, in Sensors in Automotive Technology, vol. 4 (Jossey-Bass Publishers (A Wiley Company), 2006), pp. 58–72. ISBN: 978-3-527-60507-1Google Scholar
  8. 8.
    S. Breit, C. Welham, S. Rouvillois, M. Kraft, M. McNie, Simulation environment for accurate noise and robustness analysis of MEMS under mixed-signal control, in Proceedings of the ASME International Mechanical Engineering Congress (Boston, 2008)Google Scholar
  9. 9.
    S. Maity, S. Liu, S. Rouvillois, G. Lorenz, M. Kamon, Rapidly analyzing parametric resonance and manufacturing yield of MEMS 2D scanning mirrors using hybrid finite-element/behavioral modeling, in SPIE Photonics West, MOEMS MEMS Conference (2014)Google Scholar
  10. 10.
    G. Lorenz, G. Schröpfer, 3D parametric-library-based MEMS/IC design, in System-Level Modeling of MEMS (Wiley-VCH Verlag GmbH & Co.KGaA, 2013), pp. 407–424Google Scholar
  11. 11.
    A. Parent, A. Krust, G. Lorenz, I. Favorskiy, T. Piirainen, Efficient nonlinear Simulink models of MEMS gyroscopes generated with a novel model order reduction method, in Transducers (2015)Google Scholar
  12. 12.
    J. Doblaski, PDK-based design automation enablement for a surface-micromachined capacitive MEMS foundry process, in SmartSystems Integration (Copenhagen, Denmark, 2015)Google Scholar
  13. 13.
    A. Sanginario, A. Mehdaoui, S. Zerbini, G. Schröpfer, New design methodology for MEMS-electronic-package co-design and validation for inertial sensor systems, in IEEE DTIP 2015 (Design, Test, Integration and Packaging of MEMS/MOEMS) (Montpellier, France, 2015)Google Scholar
  14. 14.
    Z. Zhang, M. Kamon, L. Daniel, Continuation-based pull-in and lift-off simulation algorithms for microelectromechanical devices. IEEE J. Microelectromech. Syst. 23(5), 1084–1093 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Parent, A. Krust, G. Lorenz, T. Piirainen, A novel model order reduction approach for generating efficient nonlinear Verilog-A models of MEMS gyroscopes, in ISISS (2015)Google Scholar
  16. 16.
    M. Rewienski, J. White, A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(2), 155–170 (2003)CrossRefGoogle Scholar
  17. 17.
    R. Zurawski, in Embedded Systems Handbook – Embedded Systems Design and Verification (CRC Press, 2009)Google Scholar
  18. 18.
    F. Pêcheux, C. Lallement, A. Vachoux, VHDL-AMS and Verilog-AMS as alternative hardware description languages for efficient modeling of multidiscipline systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(2), 204–225 (2005)CrossRefGoogle Scholar
  19. 19.
    M. Radetzki, Languages for Embedded Systems and Their Applications, vol. 36 (Springer Netherlands, Dordrecht, 2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Accelera Systems Initiative, IEEE Standard SystemC – Language Reference Manual, IEEE Computer Standards Committee Automation Design, 2002Google Scholar
  21. 21.
    Accelera Systems Initiative, Standard SystemC AMS extensions – Language Reference Manual, 2010Google Scholar
  22. 22.
    A. Jantsch, Modeling Embedded Systems and SoC’s Concurrency and Time in Models of Computation (Morgan Kaufmann, San Francisco, 2004)Google Scholar
  23. 23.
    P. Hartmann, P. Reinkemeier, A. Rettberg, W. Nebel, Modelling control systems in SystemC AMS – benefits and limitations, in IEEE International SOC Conference (SOCC) (2009)Google Scholar
  24. 24.
    T. Maehne, Z. Wang, B. Vernay, L. Andrade, C. Ben Aoun, J. Chaput, M. Louërat, F. Pêcheux, A. Krust, G. Schröpfer, M. Barnasconi, K. Einwich, F. Cenni, O. Guillaume, UVM-SystemC-AMS based framework for the correct by construction design of MEMS in their real heterogeneous application context, in International Conference on Electronics Circuits and Systems (ICECS) (Marseille, France, 2014)Google Scholar
  25. 25.
    L. Andrade, T. Maehne, A. Vachoux, C. Ben Aoun, F. Pêcheux, M.-M. Louërat, Pre-simulation symbolic analysis of synchronization issues between discrete event and timed data flow models of computation, in Design, Automation & Test in Europe Conference and Exhibition (DATE) (Grenoble, France, 2015)Google Scholar
  26. 26.
    D. Broman, C. Brooks, L. Greenberg, E.A. Lee, M. Masin, S. Tripakis, M. Wetter, Determinate composition of FMUs for co-simulation, in Proceedings of the Eleventh ACM International Conference on Embedded Software (2013)Google Scholar
  27. 27.
    G. Lasnier, J. Cardoso, P. Siron, C. Pagetti, P. Derler, in Distributed Simulation of Heterogeneous and Real-Time Systems (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gerold Schröpfer
    • 1
    Email author
  • Gunar Lorenz
    • 1
  • Arnaud Krust
    • 1
  • Benoît Vernay
    • 1
  • Stephen Breit
    • 1
  • Alexandre Mehdaoui
    • 1
  • Alessandro Sanginario
    • 2
  1. 1.CoventorParisFrance
  2. 2.IITTorinoItaly

Personalised recommendations