Flow and Particles Deposition in Rabit and Rat Airways Under Realistic Inflow Rate

  • Y. HoarauEmail author
  • P. Choquet
  • C. Goetz
  • A. Fouras
  • S. Dubsky
  • M. Braza
  • S. Saintlos-Brillac
  • F. Plouraboué
  • D. Lo Jacono
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 133)


The understanding of the flow structures and the particle transport/deposition across the human bronchial system remains a challenge to achieve because of the complexity of the geometry of human lungs. This work relies a strong collaboration between physicians, medical imaging researchers, fluid mechanics researcher and CFD researchers. Four configurations of airways (the generic Weibel model, the Human model proposed by Hiroko Kitaoka, a realistic Rat lung obtained by \(\mu \)-CT and a realistic rabbit geometry obtained by a synchrotron based CT) have been generated, meshed and simulated using the CFD commercial package CFD-ACE. Both steady and realistic inflow rates have been studied as well as the associated transport and deposition of particles.


Particle deposition Rat lungs Rabbit lungs Human lungs Numerical simulations 


  1. 1.
    Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Academic Press, New York (1978)Google Scholar
  2. 2.
    Comer, J.K., Kleinstreuer, C., Kim, C.S.: Flow structures and particle deposition patterns in double-bifurcation airway models. part 2. aerosol transport and deposition. J. Fluid Mech. 435, 55–80 (2001)zbMATHGoogle Scholar
  3. 3.
    Comer, J.K., Kleinstreuer, C., Zhang, Z.: Flow structures and particle deposition patterns in double-bifurcation airway models. part 1. air flow fields. J. Fluid Mech. 435, 25–54 (2001)zbMATHGoogle Scholar
  4. 4.
    Crowe, C., Sommerfed, M., Tsuji, Y.: Multiphase flows with droplets and particle. CRC Press, USA (1998)Google Scholar
  5. 5.
    Dubsky, S., Hooper, S.B., Siu, K.K.W., Fouras, A.: Synchrotron-based dynamic computed tomography of tissue motion for regional lung function measurement. J. R. Soc. Interface 9(74), 2213–2224 (2012)CrossRefGoogle Scholar
  6. 6.
    Dunbar, C.A., Hickey, A.J.: Design of aerosol systems for drug delivery to the lungs using numerical methods. The Respiratory Systems. WIT press, Southampton, Medical Applications of Computer Modelling (2001)Google Scholar
  7. 7.
    Ertbruggen, C., Hirsch, C., Paiva, M.: Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. J. Appl, Phys (2004)Google Scholar
  8. 8.
    Fouras, A., Allison, B.J.: Dubsky Kitchen, M.J., Nguyen, J.T.S., Hourigan, K., Siu, K.K.W., Uesugi, K., Yagi, N., Lewis, R.A., Wallace, M.J., Hooper, S.B.: Altered lung motion is a sensitive indicator of regional lung disease. Ann. Biomed. Eng. 40(5), 1160–1169 (2012)CrossRefGoogle Scholar
  9. 9.
    Hammersley, J., Olson, D.E.: Physical models of the smaller pulmonary airways. J. Appl, Physiol (1992)Google Scholar
  10. 10.
    Hegedus, J., Balashazy, I., Farkas, A.: Detailed mathematical description of the geometry of airway bifurcations. J. Appl, Physiol (2004)Google Scholar
  11. 11.
    Horsfield, K., Cumming, G.: Morphology of the bronchial tree in man. J. Appl, Physiol (1968)Google Scholar
  12. 12.
    Horsfield, K., Dart, G., Olson, D.E.: Models of the human bronchial tree. J. Appl, Physiol (1971)Google Scholar
  13. 13.
    Ilmi Robleh, H.: Modélisation numérique des écoulements pulmonaires, Ph.D. thesis (2012)Google Scholar
  14. 14.
    Katz, I.M., Schroeter, J.D., Martonen, T.B.: Factors affecting the deposition of aerosolized insulin. Diab. Technol. Ther. 3, 387–397 (2001)CrossRefGoogle Scholar
  15. 15.
    Kim, C.S., Fisher, D.M.: Deposition characteristics of aerosol particles in sequentially bifurcating airway models. Aerosol Sci. Technol. 31, 198–220 (1999)CrossRefGoogle Scholar
  16. 16.
    Kitaoka, H., Takaki, R., Suki, B.: A three-dimensional model of the human airway tree. J. Appl. Physiol. 87(6), 2007–2017 (1999)Google Scholar
  17. 17.
    Kleinstreuer, C., Zhang, Z.: Laminar-to-turbulent fluid-particle flows in a human airway model. Int. J. Multiphas. Flow 29, 271–289 (2003)Google Scholar
  18. 18.
    Li, Z., Kleinstreuer, C., Zhang, Z.: Simulation of airflow fields and microparticle deposition in realistic human lung airway models. part 1: airflow patterns. Eur. J. Mech. B/Fluids 26, 632–649 (2007)Google Scholar
  19. 19.
    Li, Z., Kleinstreuer, C., Zhang, Z.: Simulation of airflow fields and microparticle deposition in realistic human lung airway models. part 2: particle transport and deposition. Eur. J. Mech. B/Fluids 26, 650–668 (2007)Google Scholar
  20. 20.
    Miki, T., Imai, Y., Ishikawa, T., Yamaguchi, T.: Airflow simulation of inspiration and expiration using a patient-specific model. Communication in BioEngineering 09. Oxford, England, 24–25 Sept 2009Google Scholar
  21. 21.
    Nowak, N., Kakade, P.P., Annapragada, A.V.: Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed, Eng (2003)Google Scholar
  22. 22.
    Weibel, E.R.: Morphometry of the Human Lung. Academic Press, New York (1963)CrossRefGoogle Scholar
  23. 23.
    Weibel, E.R.: The Pathway for Oxygen. Harvard University Press, Structure and Function in the Mammalian Respiratory System (1984)Google Scholar
  24. 24.
    Witschger, O., Fabriès, J.F.: Particules ultra-fines et santé au travail. 1- charactéristiques et effets potentiels sur la santé. INRS, Département Métrologie des polluants, Second trimestre, pp. 21–35 (2005)Google Scholar
  25. 25.
    Zhang, Z., Kleinstreuer, C., Kim, C.S.: Aerosol deposition efficiencies and upstream release position for different inhalation modes in an upper bronchial airway model. Aerosol Sci. Technol. 36, 828–844 (2002)CrossRefGoogle Scholar
  26. 26.
    Zhang, Z., Kleinstreuer, C., Kim, C.S.: Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. J. Aerosol Sci. 33, 257–281 (2002)CrossRefGoogle Scholar
  27. 27.
    Zhao, Y., Lieber, B.B.: Steady inspiratory flow in a model symmetric bifurcation. Trans. ASME: J. Biomech. Engrg. 116, 488–496 (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Y. Hoarau
    • 1
    Email author
  • P. Choquet
    • 2
  • C. Goetz
    • 2
  • A. Fouras
    • 3
  • S. Dubsky
    • 3
  • M. Braza
    • 4
  • S. Saintlos-Brillac
    • 4
  • F. Plouraboué
    • 4
  • D. Lo Jacono
    • 4
  1. 1.ICUBE, Université de Strasbourg, CNRSStrasbourgFrance
  2. 2.Imagerie Préclinique des Hôpitaux Universitaires de StrasbourgStrasbourgFrance
  3. 3.Laboratory of Dynamic ImagingMonash UniversityMelbourneAustralia
  4. 4.Institut de Mécanique des Fluides de Toulouse, UMR-CNRS-INPT-UPS-N? 5502ToulouseFrance

Personalised recommendations