Skip to main content

Virtual Patients and Virtual Cohorts: A New Way to Think About the Design and Implementation of Personalized ICU Treatments

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2016

Abstract

Intensive care unit (ICU) patients exhibit complex and highly variable behavior, making them very difficult to manage efficiently and safely. More pragmatically, the cost of intensive care in healthcare systems has dramatically risen over the last decades mostly because of patient ageing. The next generation and challenge for ICU care is thus to personalize and improve care to manage inter- and intra-patient variability and improve cost and productivity. Defeating ‘one size fits all’ protocolized approaches and moving to a ‘one method fits all’ personalized approach could provide the big step forward required to handle the demographic tsunami and rising costs.

Computer models offer one powerful opportunity to personalize care by using clinical data and system identification methods to create a so-called ‘virtual patient’ representing the patient in a particular state. This approach relies on identifying patient-specific parameters that are time varying, capture inter- and intra-patient variability, and are not a function of the therapeutic inputs. Such ‘sensitivities’ are the key to unlocking virtual patients and model-based care. Thus, the approach predefines the type of deterministic physiological models used. These models have a long history in physiological studies, but a much shorter one in clinical studies. However, over the last 10 years, the successful design and implementation of model-based sensors or decision support systems [1, 2] has demonstrated the potential of this approach to provide personalized solutions for ICU patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chase JG, Le Compte AJ, Preiser JC, Shaw GM, Penning S, Desaive T (2011) Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice? Ann Intensive Care 1:11

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dong Y, Chbat NW, Gupta A, Hadzikadic M, Gajic O (2012) Systems modeling and simulation applications for critical care medicine. Ann Intensive Care 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vincent JL (2010) We should abandon randomized controlled trials in the intensive care unit. Crit Care Med 38(10 Suppl):S534–S538

    Article  PubMed  Google Scholar 

  4. Kovatchev BP, Breton M, Man CD, Cobelli C (2009) In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol 3:44–55

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carson ER, Cobelli C (2001) Modelling Methodology For Physiology And Medicine. Elsevier, Amsterdam

    Google Scholar 

  6. Keener JP, Sneyd J (1998) Mathematical Physiology. Springer, New York

    Google Scholar 

  7. Hunter P, Coveney PV, de Bono B et al (2010) A vision and strategy for the virtual physiological human in 2010 and beyond. Philos Transact A Math Phys Eng Sci 368:2595–2614

    Article  Google Scholar 

  8. Tawhai MH, Burrowes KS, Hoffman EA (2006) Computational models of structure-function relationships in the pulmonary circulation and their validation. Exp Physiol 91:285–293

    Article  PubMed  Google Scholar 

  9. Chiew YS, Pretty C, Docherty PD et al (2015) Time-varying respiratory system elastance: a physiological model for patients who are spontaneously breathing. PLoS One 10:e0114847

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lin J, Razak NN, Pretty CG et al (2011) A physiological Intensive Control Insulin-Nutrition-Glucose (ICING) model validated in critically ill patients. Comput Methods Programs Biomed 102:192–205

    Article  PubMed  Google Scholar 

  11. Hann CE, Chase JG, Lin J, Lotz T, Doran CV, Shaw GM (2005) Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model. Comput Methods Programs Biomed 77:259–270

    Article  PubMed  Google Scholar 

  12. Chase JG, Suhaimi F, Penning S et al (2010) Validation of a model-based virtual trials method for tight glycemic control in intensive care. Biomed Eng Online 9:84

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chase JG, Le Compte AJ, Suhaimi F et al (2011) Tight glycemic control in critical care. The leading role of insulin sensitivity and patient variability: A review and model-based analysis. Comput Methods Programs Biomed 102:156–171

    Article  PubMed  Google Scholar 

  14. Lin J, Lee D, Chase JG et al (2008) Stochastic modelling of insulin sensitivity and adaptive glycemic control for critical care. Comput Methods Programs Biomed 89:141–152

    Article  PubMed  Google Scholar 

  15. van Drunen VE, Chiew YS, Zhao Z et al (2013) Visualisation of time-variant respiratory system elastance in ARDS models. Biomed Tech (Berl) 58(Suppl 1):4328

    Google Scholar 

  16. Chiew YS, Chase JG, Shaw GM, Sundaresan A, Desaive T (2011) Model-based PEEP optimisation in mechanical ventilation. Biomed Eng Online 10:111

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wernerman J, Desaive T, Finfer S et al (2014) Continuous glucose control in the ICU: report of a 2013 round table meeting. Crit Care 18:226

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aragon D (2006) Evaluation of nursing work effort and perceptions about blood glucose testing in tight glycemic control. Am J Crit Care 15:370–377

    PubMed  Google Scholar 

  19. Pretty C, Chase JG, Lin J et al (2011) Impact of glucocorticoids on insulin resistance in the critically ill. Comput Methods Programs Biomed 102:172–180

    Article  PubMed  Google Scholar 

  20. Pretty C, Chase JG, Le Compte A, Lin J, Shaw G (2011) Impact of metoprolol on insulin sensitivity in the ICU. Trauma 4:4

    Google Scholar 

  21. Pretty CG, Le Compte AJ, Chase JG et al (2012) Variability of insulin sensitivity during the first 4 days of critical illness: implications for tight glycemic control. Ann Intensive Care 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sah PA, Chase JG, Pretty CG et al (2014) Evolution of insulin sensitivity and its variability in out-of-hospital cardiac arrest (OHCA) patients treated with hypothermia. Crit Care 18:586

    Google Scholar 

  23. Ferenci T, Benyo B, Kovacs L, Fisk L, Shaw GM, Chase JG (2013) Daily evolution of insulin sensitivity variability with respect to diagnosis in the critically ill. PloS one 8:e57119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin J, Parente JD, Chase JG et al (2011) Development of a model-based clinical sepsis biomarker for critically ill patients. Comp Methods Programs Biomed 102:149–155

    Article  Google Scholar 

  25. van Drunen EJ, Chase JG, Chiew YS, Shaw GM, Desaive T (2013) Analysis of different model-based approaches for estimating dFRC for real-time application. Biomed Eng Online 12:9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chiew YS, Chase JG, Lambermont B et al (2013) Effects of neurally adjusted ventilatory assist (NAVA) levels in non-invasive ventilated patients: titrating NAVA levels with electric diaphragmatic activity and tidal volume matching. Biomed Eng Online 12:61

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Drunen EJ, Chiew YS, Chase JG et al (2013) Expiratory model-based method to monitor ARDS disease state. Biomed Eng Online 12:57

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pielmeier U, Andreassen S, Juliussen B, Chase JG, Nielsen BS, Haure P (2010) The Glucosafe system for tight glycemic control in critical care: a pilot evaluation study. J Crit Care 25:97–104

    Article  CAS  PubMed  Google Scholar 

  29. Plank J, Blaha J, Cordingley J et al (2006) Multicentric, randomized, controlled trial to evaluate blood glucose control by the model predictive control algorithm versus routine glucose management protocols in intensive care unit patients. Diabetes Care 29:271–276

    Article  PubMed  Google Scholar 

  30. Van Herpe T, Mesotten D, Wouters PJ et al (2013) LOGIC-insulin algorithm-guided versus nurse-directed blood glucose control during critical illness: The LOGIC-1 single-center randomized, controlled clinical trial. Diabetes Care 36:189–194

    Google Scholar 

  31. Evans A, Le Compte A, Tan CS et al (2012) Stochastic targeted (STAR) Glycemic control: design, safety, and performance. J Diabetes Sci Technol 6:102–115

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fisk L, Lecompte A, Penning S, Desaive T, Shaw G, Chase G (2012) STAR Development and Protocol Comparison. IEEE Trans Biomed Eng 59:3357–3364

    Article  PubMed  Google Scholar 

  33. Le Compte AJ, Chase JG, Lynn A, Hann CE, Shaw GM, Lin J (2011) Development of blood glucose control for extremely premature infants. Comput Methods Programs Biomed 102:181–191

    Article  PubMed  Google Scholar 

  34. Lonergan T, LeCompte A, Willacy M et al (2006) A simple insulin-nutrition protocol for tight glycemic control in critical illness: development and protocol comparison. Diabetes Technol Ther 8:191–206

    Article  PubMed  Google Scholar 

  35. Wilinska ME, Chassin L, Hovorka R (2008) In silico testing – impact on the progress of the closed loop insulin infusion for critically ill patients project. J Diabetes Sci Technol 2:417–423

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chase JG, Shaw GM, Lotz T et al (2007) Model-based insulin and nutrition administration for tight glycaemic control in critical care. Curr Drug Deliv 4:283–296

    Article  CAS  PubMed  Google Scholar 

  37. Le Compte AJ, Pretty CG, Lin J, Shaw GM, Lynn A, Chase JG (2011) Impact of variation in patient response on model-based control of glycaemia in critically ill patients. Comput Methods Programs Biomed 109:211–219

    Article  PubMed  Google Scholar 

  38. Pretty CG, Signal M, Fisk L et al (2014) Impact of sensor and measurement timing errors on model-based insulin sensitivity. Comput Methods Programs Biomed 114:e79–e86

    Article  PubMed  Google Scholar 

  39. Vincent JL, Hall JB, Slutsky AS (2015) Ten big mistakes in intensive care medicine. Intensive Care Med 41:505–507

    Article  PubMed  Google Scholar 

  40. Van Herpe T, Pluymers B, Espinoza M, Van den Berghe G, De Moor B (2006) A minimal model for glycemia control in critically ill patients. Conf Proc IEEE Eng Med Biol Soc 1:5432–5435

    PubMed  Google Scholar 

  41. Hovorka R, Chassin LJ, Ellmerer M, Plank J, Wilinska ME (2008) A simulation model of glucose regulation in the critically ill. Physiol Meas 29:959–978

    Article  PubMed  Google Scholar 

  42. Evans A, Shaw GM, Le Compte A et al (2011) Pilot proof of concept clinical trials of Stochastic Targeted (STAR) glycemic control. Ann Intensive Care 1:38

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lonergan T, Compte AL, Willacy M et al (2006) A pilot study of the SPRINT protocol for tight glycemic control in critically Ill patients. Diabetes Technol Ther 8:449–462

    Article  PubMed  Google Scholar 

  44. Pretty CG (2012) Analysis, classification and management of insulin sensitivity variability in a glucose-insulin system model for critical illness. http://ir.canterbury.ac.nz/bitstream/handle/10092/6580/thesis_fulltext.pdf?sequence=1. Accessed November 2015

    Google Scholar 

  45. Preiser JC, Devos P, Ruiz-Santana S et al (2009) A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med 35:1738–1748

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Chase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chase, J.G., Desaive, T., Preiser, JC. (2016). Virtual Patients and Virtual Cohorts: A New Way to Think About the Design and Implementation of Personalized ICU Treatments. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2016. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-27349-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27349-5_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27348-8

  • Online ISBN: 978-3-319-27349-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics