A Spatio-Temporal Multiagent Simulation Framework for Reusing Agents in Different Kinds of Scenarios

  • Daan ApeldoornEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9433)


In this paper a spatio-temporal simulation framework for multiagent systems is introduced. Its fundamental idea consists in the possibility to develop agents that can be easily deployed in different kinds of scenarios without adapting the agents’ percepts, actions or communication model to a specific scenario. This can be useful to observe and evaluate agents in the context of various scenarios, e. g. to measure their generality and adaptivity against different kinds of problems. To demonstrate the framework, two different example scenarios are considered that are both simulated with the same simple agent implementation.


Multiagent simulation Reusable agents Graphical modeling 



The author would like to thank Matthias Thimm for constant feedback on this paper. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013), REVEAL (Grant agree number 610928).


  1. 1.
    Apeldoorn, D.: AbstractSwarm – a generic graphical modeling language for multi-agent systems. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS, vol. 8076, pp. 180–192. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Bordini, R.H., Hübner, J.F.: BDI agent programming in agentspeak using jason (Tutorial Paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  3. 3.
    Cabac, L., Dörges, T., Duvigneau, M., Reese, C., Wester-Ebbinghaus, M.: Models and tools for mulan applications. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 328–330. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  4. 4.
    Domschke, W., Scholl, A.: Logistik: Rundreisen und Touren. Oldenbourg Wissenschaftsverlag, München (2010) Google Scholar
  5. 5.
    Greulich, C., Edelkamp, S., Gath, M.: Agent-based multimodal transport planning in dynamic environments. In: Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS, vol. 8077, pp. 74–85. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Holmgren, J., Davidsson, P., Persson, J.A., Ramstedt, L.: Tapas: a multi-agent-based model for simulation of transport chains. Simul. Model. Pract. Theory 23, 1–18 (2012)CrossRefGoogle Scholar
  7. 7.
    Kimura, T., Sano, T., Hayashida, K., Takeichi, N., Minegishi, Y., Yoshida, Y., Watanabe, H.: Representing crowds with a mulit-agent model. Architectural Plann. Res. 74(636), 371–377 (2009)CrossRefGoogle Scholar
  8. 8.
    Klügl, F.: Sesam: visual programming and participatory simulation for agent-based models. In: Weyns, H., Uhrmacher, A. (eds.) Multi-Agent Systems: Simulation and Applications, pp. 477–508. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  9. 9.
    Kutschinski, E., Polani, D., Uthmann, T.: Dmarks ii: An agent-based platform for automated trade and its simulation. In: 14. ASIM Workshop Simulation and Artificial Intelligence on Multi-Agent Systems and Individual-Based Simulation. Würzburg, Germany (2000)Google Scholar
  10. 10.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: a multi-agent simulation environment. Simul. Trans. Soc. Model. Simul. Int. 81(7), 517–527 (2005)Google Scholar
  11. 11.
    Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The swarm simulation system: a toolkit for building multi-agent simulations. Working paper 96–06-042, Santa Fe Institute (1996)Google Scholar
  12. 12.
    North, M., Collier, N., Ozik, J., Tatara, E., Altaweel, M., Macal, C., Bragen, M., Sydelko, P.: Complex adaptive systems modeling with repast simphony. Complex Adapt. Syst. 1, 3 (2013)CrossRefGoogle Scholar
  13. 13.
    Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  14. 14.
    Plotkin, G.D.: A structural approach to operational semantics. J. Logic Algebraic Program. 60–61, 17–139 (2004)Google Scholar
  15. 15.
    Reisig, W.: Petrinetze: Modellierungstechnik, Analysemethoden. Fallstudien. Vieweg+Teubner, Wiesbaden (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Sansores, C.E., Reyes, F., Gómez, H.F., Pavón, J., Calderón-Aguilera, L.E.: Biomass: a biological multi-agent simulation system. In: 2011 Federated Conference on Computer Science and Information Systems (FedCSIS 2011), pp. 675–682. IEEE, Szczecin (2012)Google Scholar
  17. 17.
    Scheuren, S., Stiene, S., Hertzberg, J., Hartanto, R., Reinecke, M.: The problem of spatio-temporally constrained motion planning for cooperative vehicles. In: Proceedings of the 26th Workshop “Planen, Scheduling und Konfigurieren, Entwerfen” (PuK 2011) (2011)Google Scholar
  18. 18.
    Tisue, S., Wilensky, U.: Netlogo: A simple environment for modeling complexity. In: Proceedings of the Fifth International Conference on Complex Systems (ICCS 2004). Boston (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Information Engineering GroupTechnische Universität DortmundDortmundGermany

Personalised recommendations