Agent-Based Voting Architecture for Traffic Applications

  • Sophie L. DennisenEmail author
  • Jörg P. Müller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9433)


We study voting rules as a promising option for collective decision making in traffic applications. The aim of our work is to compare the suitability of several voting rules for different traffic applications and to tackle problems which arise when applying voting rules in traffic management. Here, we propose a multi-agent based voting architecture for evaluation of the suitability of voting rules. The design of the voting architecture is informed by the requirements from two applications we intend to study. The J-MADeM architecture is adapted for the development of our architecture. We describe the voting theory model we intend to incorporate in the architecture, the initial applications we plan to investigate and the features of the voting architecture. Furthermore, we outline the first simulation we intend to conduct using the voting architecture, focusing on the aspect of iterative winner determination for the committee voting rules Minisum and Minimax Approval.


Vote Rule Approval Vote Preference Profile Centralise Election Winner Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been supported by the German Research Foundation (DFG) through the Research Training Group SocialCars (GRK 1931). The focus of the SocialCars Research Training Group is on significantly improving the city’s future road traffic, through cooperative approaches. This support is gratefully acknowledged.


  1. 1.
    Aseere, A.: A voting-based agent system to support personalised e-Learning in a course selection scenario. Ph.D. thesis, University of Southampton (2012)Google Scholar
  2. 2.
    Baskar, L., De Schutter, B., Hellendoorn, J., Papp, Z.: Traffic control and intelligent vehicle highway systems: a survey. IET Intell. Transport Syst. 5(1), 38–52 (2011)CrossRefGoogle Scholar
  3. 3.
    Bellifemine, F., Poggi, A., Rimassa, G.: JADE-A FIPA-compliant agent framework. In: Proceedings of PAAM, vol. 99, p. 33. London (1999)Google Scholar
  4. 4.
    Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56, 23–34 (1948)CrossRefGoogle Scholar
  5. 5.
    Borda, J.C.: Mémoire sur les élections au scrutin. Histoire de L’Académie Royale des Sciences (1781)Google Scholar
  6. 6.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentSpeak using Jason, vol. 8. John Wiley & Sons, New York (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Brams, S., Fishburn, P.C.: Approval Voting. Springer Science & Business Media, New York (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Brams, S., Kilgour, D., Sanver, R.: A minimax procedure for negotiating multilateral treaties. In: M. Wiberg (ed.) Reasoned choices: Essays in Honor of Hannu Nurmi. Finnish Political Science Association (2004)Google Scholar
  9. 9.
    Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Weiss, G. (ed.) Multiagent Systems, 2nd edn, pp. 213–284. MIT Press, Cambridge (2013)Google Scholar
  10. 10.
    Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Padget, J., Phelps, S., Rodriguez-Aguilar, J.A., Sousa, P.: Issues in multiagent resource allocation. Informatica (Slovenia) 30(1), 3–31 (2006)zbMATHGoogle Scholar
  11. 11.
    Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A short introduction to computational social choice. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 51–69. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  12. 12.
    Condorcet, N.: Essai sur l’application de l’analyse à la probabilité des décisions redues à la pluralité des voix. Imprimerie Royale, Paris (1785)Google Scholar
  13. 13.
    Ghosh, S., Mundhe, M., Hernandez, K., Sen, S.: Voting for movies: the anatomy of a recommender system. In: Proceedings of the Third Annual Conference on Autonomous Agents, pp. 434–435. ACM (1999)Google Scholar
  14. 14.
    Grimaldo, F., Lozano, M., Barber, F.: MADeM: a multi-modal decision making for social MAS. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems vol. 1, pp. 183–190. International Foundation for Autonomous Agents and Multiagent Systems (2008)Google Scholar
  15. 15.
    Grimaldo, F., Lozano, M., Barber, F.: J-MADeM, an open-source library for social decision-making. In: CCIA, pp. 207–214 (2009)Google Scholar
  16. 16.
    Grimaldo, F., Lozano, M., Barber, F., Guerra-Hernández, A.: J-MADeM v1.1: A full-fledge AgentSpeak(L) multimodal social decision library in Jason. In: The 8th European Workshop on Multi-Agent Systems (EUMAS 2010) (2010)Google Scholar
  17. 17.
    Grimaldo, F., Lozano, M., Barber, F., Guerra-Hernández, A.: Towards a model for urban mobility social simulation. Prog. Artif. Intell. 1(2), 149–156 (2012)CrossRefGoogle Scholar
  18. 18.
    Hardekopf, B., Kwiat, K., Upadhyaya, S.: A Decentralized Voting Algorithm for Increasing Dependability in Distributed Systems. In: 5th World Multi-Conference on Systemic, Cybernetics and Informatics (SCI2001) (2001)Google Scholar
  19. 19.
    Kang, J., Kim, W., Lee, J., Yi, K.: Design, implementation, and test of skid steering-based autonomous driving controller for a robotic vehicle with articulated suspension. J. Mech. Sci. Technol. 24(3), 793–800 (2010)CrossRefGoogle Scholar
  20. 20.
    Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Voting in multi-agent systems. Comput. J. 49(2), 156–170 (2006)CrossRefGoogle Scholar
  21. 21.
    Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  22. 22.
    Reuter, G.J., Gray, J.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San Mateo (1993) zbMATHGoogle Scholar
  23. 23.
    Rothe, J., Baumeister, D., Lindner, C., Rothe, I.: Einführung in Computational Social Choice. Springer-Verlag, Heidelberg (2011)Google Scholar
  24. 24.
    Sanderson, D., Pitt, J.: Institutionalised Consensus in Vehicular Networks: Executable Specification and Empirical Validation. In: 2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW), pp. 71–76. IEEE (2012)Google Scholar
  25. 25.
    Vasirani, M., Ossowski, S.: A market-inspired approach to reservation-based urban road traffic management. In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems-vol. 1, pp. 617–624. International Foundation for Autonomous Agents and Multiagent Systems (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of InformaticsClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations