On the Effectiveness of Genetic Operations in Symbolic Regression

  • Bogdan BurlacuEmail author
  • Michael Affenzeller
  • Michael Kommenda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9520)


This paper describes a methodology for analyzing the evolutionary dynamics of genetic programming (GP) using genealogical information, diversity measures and information about the fitness variation from parent to offspring. We introduce a new subtree tracing approach for identifying the origins of genes in the structure of individuals, and we show that only a small fraction of ancestor individuals are responsible for the evolvement of the best solutions in the population.


Genetic programming Evolutionary dynamics Algorithm analysis Symbolic regression 



The work described in this paper was done within the COMET Project Heuristic Optimization in Production and Logistics (HOPL), #843532 funded by the Austrian Research Promotion Agency (FFG).


  1. 1.
    Burke, E.K., Gustafson, S., Kendall, G., Krasnogor, N.: Is increased diversity in genetic programming beneficial? An analysis of the effects on performance. In: Sarker, R., Reynolds, R., Abbass, H., Tan, K.C., McKay, B., Essam, D., Gedeon, T. (eds.) Proceedings of the 2003 Congress on Evolutionary Computation CEC2003, pp. 1398–1405. IEEE Press, Canberra (2003)CrossRefGoogle Scholar
  2. 2.
    Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Trans. Evol. Comput. 8, 47–62 (2004)CrossRefGoogle Scholar
  3. 3.
    Mattiussi, C., Waibel, M., Floreano, D.: Measures of diversity for populations and distances between individuals with highly reorganizable genomes. Evol. Comput. 12, 495–515 (2004)CrossRefGoogle Scholar
  4. 4.
    Ekárt, A., Németh, S.Z.: Maintaining the diversity of genetic programs. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 162–171. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  5. 5.
    Nguyen, T.H., Nguyen, X.H.: A brief overview of population diversity measures in genetic programming. In: Pham, T.L., Le, H.K., Nguyen, X.H. (eds.) Proceedings of the Third Asian-Pacific workshop on Genetic Programming, pp. 128–139. Military Technical Academy, Hanoi, VietNam (2006)Google Scholar
  6. 6.
    Jackson, D.: Phenotypic diversity in initial genetic programming populations. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 98–109. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Dignum, S., Poli, R.: Crossover, sampling, bloat and the harmful effects of size limits. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 158–169. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    Burlacu, B., Affenzeller, M., Kommenda, M., Winkler, S.M., Kronberger, G.: Evolution tracking in genetic programming. In: Jimenez, E., Sokolov, B. (eds.) The 24th European Modeling and Simulation Symposium, EMSS 2012, Austria, Vienna (2012)Google Scholar
  9. 9.
    Burlacu, B., Affenzeller, M., Kommenda, M., Winkler, S., Kronberger, G.: Visualization of genetic lineages and inheritance information in genetic programming. In: GECCO 2013 Companion: Proceeding of the Fifteenth Annual Conference Companion on Genetic and Evolutionary Computation Conference Companion, pp. 1351–1358. ACM, Amsterdam (2013)Google Scholar
  10. 10.
    Valiente, G.: An efficient bottom-up distance between trees. In: Proceedings of the 8th International Symposium of String Processing and Information Retrieval, pp. 212–219. Press (2001)Google Scholar
  11. 11.
    Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. Numerical Insights. CRC Press, Singapore (2009) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bogdan Burlacu
    • 1
    • 2
    Email author
  • Michael Affenzeller
    • 1
    • 2
  • Michael Kommenda
    • 1
    • 2
  1. 1.Heuristic and Evolutionary Algorithms Laboratory School of Informatics, Communications and MediaUniversity of Applied Sciences Upper AustriaHagenbergAustria
  2. 2.Institute for Formal Models and VerificationJohannes Kepler University LinzLinzAustria

Personalised recommendations