International Conference on Computer Aided Systems Theory

Computer Aided Systems Theory – EUROCAST 2015 pp 342-349 | Cite as

Heuristic Approaches for the Probabilistic Traveling Salesman Problem

  • Christoph Weiler
  • Benjamin Biesinger
  • Bin Hu
  • Günther R. Raidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9520)


The Probabilistic Traveling Salesman Problem (PTSP) is a variant of the classical Traveling Salesman Problem (TSP) where each city has a given probability requiring a visit. We aim for an a-priori tour including every city that minimizes the expected length over all realizations. In this paper we consider different heuristic approaches for the PTSP. First we analyze various popular construction heuristics for the classical TSP applied on the PTSP: nearest neighbor, farthest insertion, nearest insertion, radial sorting and space filling curve. Then we investigate their extensions to the PTSP: almost nearest neighbor, probabilistic farthest insertion, probabilistic nearest insertion. To improve the constructed solutions we use existing 2-opt and 1-shift neighborhood structures for which exact delta evaluation formulations exist. These are embedded within a Variable Neighborhood Descent framework into a Variable Neighborhood Search. Computational results indicate that this approach is competitive to already existing heuristic algorithms and able to find good solutions in low runtime.


Probabilistic traveling salesman problem Variable neighborhood search Construction heuristics 


  1. 1.
    Balaprakash, P., Birattari, M., Stützle, T., Dorigo, M.: Adaptive sample size and importance sampling in estimation-based local search for the probabilistic traveling salesman problem. Eur. J. Oper. Res. 199(1), 98–110 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Balaprakash, P., Birattari, M., Stützle, T., Yuan, Z., Dorigo, M.: Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem. Swarm Intel. 3(3), 223–242 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Bartholdi III, J.J., Platzman, L.K.: An \({O}(n log n)\) planar travelling salesman heuristic based on spacefilling curves. Oper. Res. Lett. 1(4), 121–125 (1982)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bertsimas, D., Howell, L.H.: Further results on the probabilistic traveling salesman problem. Eur. J. Oper. Res. 65(1), 68–95 (1993)CrossRefMATHGoogle Scholar
  5. 5.
    Bertsimas, D.J., Chervi, P., Peterson, M.: Computational approaches to stochastic vehicle routing problems. Transp. Sci. 29(4), 342–352 (1995)CrossRefMATHGoogle Scholar
  6. 6.
    Bertsimas, D.J., Jaillet, P., Odoni, A.R.: A priori optimization. Oper. Res. 38(6), 1019–1033 (1991)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bianchi, L., Gambardella, L.M., Dorigo, M.: An ant colony optimization approach to the probabilistic traveling salesman problem. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 883–892. Springer, Heidelberg (2002) Google Scholar
  8. 8.
    Bianchi, L., Knowles, J., Bowler, N.: Local search for the probabilistic traveling salesman problem: correction to the 2-p-opt and 1-shift algorithms. Eur. J. Oper. Res. 162(1), 206–219 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chervi, P.: A computational approach to probabilistic vehicle routing problems. Master’s thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science (1988)Google Scholar
  10. 10.
    Jaillet, P.: Probabilistic traveling salesman problems. Ph.D. thesis, Massachusetts Institute of Technology (1985)Google Scholar
  11. 11.
    Marinakis, Y., Marinaki, M.: A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem. Comput. Oper. Res. 37(3), 432–442 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
  14. 14.
    Weyland, D., Bianchi, L., Gambardella, L.M.: New approximation-based local search algorithms for the probabilistic traveling salesman problem. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 681–688. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  15. 15.
    Weyland, D., Montemanni, R., Gambardella, L.M.: An enhanced ant colony system for the probabilistic traveling salesman problem. In: Di Caro, G.A., Theraulaz, G. (eds.) BIONETICS 2012. LNICST, vol. 134, pp. 237–249. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christoph Weiler
    • 1
  • Benjamin Biesinger
    • 1
  • Bin Hu
    • 2
  • Günther R. Raidl
    • 1
  1. 1.Institute of Computer Graphics and AlgorithmsTU WienViennaAustria
  2. 2.Mobility Department - Dynamic Transportation SystemsAIT Austrian Institute of TechnologyViennaAustria

Personalised recommendations