Distributed Agent-Based Simulation and GIS: An Experiment with the Dynamics of Social Norms

  • Nicola Lettieri
  • Carmine SpagnuoloEmail author
  • Luca Vicidomini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9523)


In the last decade, the investigation of the social complexity has witnessed the rise of Computational Social Science, a research paradigm that heavily relies upon data and computation to foster our understanding of social phenomena. In this field, a key role is played by the explanatory and predictive power of agent-based social simulations that are showing to take advantage of GIS, higher number of agents and real data. We focus GIS based distibuted ABMs. We observed that the density distribution of agents, over the field, strongly impact on the overall performances. In order to better understand this issue, we analyzes three different scenarios ranging from real positioning, where the citizens are positioned according to a real dataset to a random positioning where the agent are positioned uniformly at random on the field. Results confirm our hypothesis and show that an irregular distribution of the agents over the field increases the communication overhead. We provide also an analytic analysis which, in a 2-dimensional uniform field partitioning, is affected by several parameters (which depend on the model), but is also influenced by the density distribution of agents over the field. According to the presented results, we have that uniform space partitioning strategy does not scale on GIS based ABM characterized by an irregular distribution of agents.


Distributed agent-based social simulation GIS D-Mason Parallel computing Distributed systems ABM GIS 


  1. 1.
    Generative social science: studies in agent-based computational modeling (2006)Google Scholar
  2. 2.
    Andrighetto, G., Campennì, M., Conte, R., Paolucci, M.: On the immergence of norms: a normative agent architecture (2014)Google Scholar
  3. 3.
    Axelrod, R.: The complexity of cooperation (1997)Google Scholar
  4. 4.
    Balan, G.C., Cioffi-Revilla, C., Luke, S., Panait, L., Paus, S.: MASON: a Java multi-agent simulation library. In: Proceedings of the Agent 2003 Conference (2003)Google Scholar
  5. 5.
    Benenson, I.: Agent-based models of geographical systems. Int. J. Geograph. Inf. Sci. 27, 2483–2508 (2013)CrossRefGoogle Scholar
  6. 6.
    Brunsdon, C., Singleton, A.: Geocomputation: A Practical Primer. SAGE (2015)Google Scholar
  7. 7.
    Cioffi-Revilla, C.: Computational social science. Comput. Stat. Wiley Interdisc. Rev. 2, 259–271 (2010)CrossRefGoogle Scholar
  8. 8.
    Collier, N., North, M.: Repast HPC: a platform for large-scale agent-based modeling. In: Dubitzky, W., Kurowski, K., Schott, B. (eds.) Large-Scale Computing Techniques for Complex System Simulations. Wiley, Hoboken (2011)Google Scholar
  9. 9.
    Conte, R., Gilbert, N., Bonelli, G., Cioffi-Revilla, C., Deffuant, G., Kertesz, J., Loreto, V., Moat, S., Nadal, J.P., Sanchez, A., et al.: Manifesto of computational social science. Eur. Phys. J. Spec. Top. 214, 325–346 (2012)CrossRefGoogle Scholar
  10. 10.
    Conte, R., Paolucci, M.: On agent-based modeling and computational social science. Front. Psychol. 5, 668 (2014)CrossRefGoogle Scholar
  11. 11.
    Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.: A framework for distributing agent-based simulations. In: Alexander, M., D’Ambra, P., Belloum, A., Bosilca, G., Cannataro, M., Danelutto, M., Martino, B., Gerndt, M., Jeannot, E., Namyst, R., Roman, J., Scott, S.L., Traff, J.L., Vallée, G., Weidendorfer, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 7155, pp. 460–470. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. 12.
    Cordasco, G., De Chiara, R., Mancuso, M., Mazzeo, D., Scarano, V., Spagnuolo, C.: Bringing together efficiency and effectiveness in distributed simulations: the experience with D-MASON. SIMULATION Trans. Soc. Model. Simul. Int. 89, 1236–1526 (2013)CrossRefGoogle Scholar
  13. 13.
    Cordasco, G., Mancuso, A., Milone, F., Spagnuolo, C.: Communication strategies in distributed agent-based simulations: the experience with D-Mason. In: Mey, D., et al. (eds.) Euro-Par 2013. LNCS, vol. 8374, pp. 533–543. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  14. 14.
    Cordasco, G., Milone, F., Spagnuolo, C., Vicidomini, L.: Exploiting D-Mason on parallel platforms: a novel communication strategy. In: Lopes, L., et al. (eds.) Euro-Par 2014, Part I. LNCS, vol. 8805, pp. 407–417. Springer, Heidelberg (2014) Google Scholar
  15. 15.
    Cosenza, B., Cordasco, G., De Chiara, R., Scarano, V.: Distributed load balancing for parallel agent-based simulations. In: 2011 19th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) (2011)Google Scholar
  16. 16.
    Crooks, A., Wise, S.: GIS and agent-based models for humanitarian assistance. Comput. Environ. Urban Syst. 41, 100–111 (2013)CrossRefGoogle Scholar
  17. 17.
    D-MASON Official GitHub Repository. Accessed Jun 2015
  18. 18.
  19. 19.
    Federico, B., Squazzoni, F.: Complexity-Friendly Policy Modelling. Routledge, London (2015)Google Scholar
  20. 20.
    Gilbert, N., Troitzsch, K.: Simulation for the Social Scientist. McGraw-Hill, New York (2005)Google Scholar
  21. 21.
  22. 22.
    GIS, ABM community.
  23. 23.
    Helbing, D., Balietti, S.: From social simulation to integrative system design. Eur. Phys. J. Spec. Top. 195, 69–100 (2011)CrossRefGoogle Scholar
  24. 24.
    Henrich, J., Ensminger, J., McElreath, R., Barr, A., Barrett, C., Bolyanatz, A., Cardenas, J.C., Gurven, M., Gwako, E., Henrich, N., et al.: Markets, religion, community size, and the evolution of fairness and punishment. Science 327, 1480–1484 (2010)CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Kiran, M., Chin, L., Richmond, P., Holcombe, M., Worth, D., Greenough, C.: Flame: simulating large populations of agents on parallel hardware architecturesGoogle Scholar
  27. 27.
    Lazer, D., Pentland, A.S., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., et al.: Life in the network: the coming age of computational social science. Science (New York, NY) 323, 721 (2009)CrossRefGoogle Scholar
  28. 28.
    Neumann, M.: Homo socionicus: a case study of simulation models of norms. J. Artif. Soc. Soc. Simul. 11, 6 (2008)Google Scholar
  29. 29.
    Paolucci, M., Kossman, D., Conte, R., Lukowicz, P., Argyrakis, P., Blandford, A., Bonelli, G., Anderson, S., de Freitas, S., Edmonds, B., et al.: Towards a living earth simulator. Eur. Phys. J. Spec. Top. 214, 77–108 (2012)CrossRefGoogle Scholar
  30. 30.
    Putterman, L.: Cooperation and punishment. Science 69, 1061–1075 (2010)MathSciNetGoogle Scholar
  31. 31.
    Regione Campania: Geoportale: Geographic information system of campania.
  32. 32.
    Rousset, A., Herrmann, B., Lang, C., Philippe, L.: A survey on parallel and distributed multi-agent systems. In: Lopes, L., et al. (eds.) Euro-Par 2014, Part I. LNCS, vol. 8805, pp. 371–382. Springer, Heidelberg (2014) Google Scholar
  33. 33.
    Schelling, T.C.: Dynamic models of segregation. J. Math. Soc. 1, 143–186 (1971)CrossRefGoogle Scholar
  34. 34.
    Squazzoni, F., Boero, R.: Complexity-friendly policy modelling. In: Innovation in Complex Social Systems (2010)Google Scholar
  35. 35.
    Sullivan, K., Coletti, M., Luke, S.: GeoMason: geospatial support for MASON. Technical report, Department of Computer Science, George Mason University (2010)Google Scholar
  36. 36.
    Tisue, S., Wilensky, U.: Netlogo: a simple environment for modeling complexity. In: International Conference on Complex Systems (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicola Lettieri
    • 1
  • Carmine Spagnuolo
    • 2
    Email author
  • Luca Vicidomini
    • 2
  1. 1.ISFOLUniversità del SannioBeneventoItaly
  2. 2.Dipartimento di InformaticaUniversità degli Studi di SalernoFiscianoItaly

Personalised recommendations