Dynamic Actuation for Delta Wing Post Stall Flow Control

  • Anja KölzschEmail author
  • Sophie Blanchard
  • Christian Breitsamter
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 132)


The manipulation of delta wing flow by active and passive flow control methods is of great interest for increasing the performance (e.g. lift enhancement) of such configurations. This work presents experimental results in the post-stall regime at very high angles of attack (\(\alpha =\) 35–\(45^\circ \)) on a \(65^\circ \) sweptback generic half delta wing configuration (VFE-2 geometry) with sharp leading edge using slot actuators for pulsed blowing along the leading edge. The study comprises results of force, velocity and pressure measurements and substantiates the receptivity of the shear layer for the pulsed excitation. For \(\alpha = 35^\circ \), an actuation at \(F^{+} \approx 2.7\) effects a retardation of vortex breakdown. For \(\alpha = 45^\circ \), the optimum pulse frequency was found at \(F^{+} =\) 1.0–1.5, which leads to the re-establishment of a burst vortex and a significant increase in lift, thus satisfying the aim of enhancing aerodynamic performance.


Shear Layer Lift Coefficient Free Stream Velocity Delta Wing Wing Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the German Research Association (Deutsche Forschungsgemeinschaft, DFG) for the funding of the project.


  1. 1.
    Hummel, D.: On the Vortex Formation over a Slender Wing at Large Angles of Incidence, High Angle of Attack Aerodynamics, AGARD-CP-247, pp. 15-1–15-17, Sandfjord, Norway (1978)Google Scholar
  2. 2.
    Gad-el-Hak, M., Blackwelder, R.F.: Control of discrete vortices from a delta wing. AIAA J. 25(8), 1042–1049 (1987)CrossRefGoogle Scholar
  3. 3.
    Gursul, I.: Unsteady flow phenomena over delta wings at high angle of attack. AIAA J. 32(2), 225–231 (1994)CrossRefGoogle Scholar
  4. 4.
    Mitchell, A.M., Delery, J.: Research into vortex breakdown control. Progr. Aerosp. Sci. 37, 385–418 (2001)CrossRefGoogle Scholar
  5. 5.
    Breitsamter, C.: Unsteady flow phenomena associated with leading-edge vortices. Progr. Aerosp. Sci. 44, 48–65 (2008)CrossRefGoogle Scholar
  6. 6.
    Gursul, I., Wang, I., Vardaki, E.: Review of flow control mechanisms of leading-edge vortices. Progr. Aerosp. Sci. 43, 246–270 (2007)CrossRefGoogle Scholar
  7. 7.
    Gad-el-Hak, M.: Flow Control—Passive, Active, and Reactive Flow Management. Cambridge University Press, Cambridge (2008)Google Scholar
  8. 8.
    Klute, S.M., Rediniotis, O.K., Telionis, D.P.: Flow control over a maneuvering delta wing at high angle of attack. AIAA J. 34(4), 662–668 (1996)CrossRefGoogle Scholar
  9. 9.
    Deng, Q., Gursul, I.: Effect of leading-edge flaps on vortices and vortex breakdown. J. Aircraft 33(6), 1079–1086 (1996)CrossRefGoogle Scholar
  10. 10.
    Gursul, I., Srinivas, S., Batta, G.: Active control of vortex breakdown over a delta wing. AIAA J. 33(9), 1743–1745 (1995)CrossRefGoogle Scholar
  11. 11.
    Greenblatt, D., Wygnanski, I.J.: The control of flow separation by periodic excitation. Progr. Aerosp. Sci. 36, 487–545 (2000)CrossRefGoogle Scholar
  12. 12.
    Wood, N.J., Roberts, L.: Control of vortical lift on delta wings by tangential leading-edge blowing. J. Aircraft 25(3), 236–243 (1988)CrossRefGoogle Scholar
  13. 13.
    Rockwell, D., Gu, W., Robinson, O.: Control of vortices on a delta wing by leading-edge injection. AIAA J. 31(7), 1177–1186 (1993)CrossRefGoogle Scholar
  14. 14.
    Margalit, S., Greenblatt, D., Seifert, A., Wygnanski, I.: Delta wing stall and roll control using segmented piezoelectric fluidic actuators. J. Aircraft 42(3), 698–709 (2005)CrossRefGoogle Scholar
  15. 15.
    Williams, N.M., Wang, Z., Gursul, I.: Active flow control on a nonslender delta wing. J. Aircraft 45(6), 2100–2110 (2008)CrossRefGoogle Scholar
  16. 16.
    Siegel, S.G., McLaughlin, T.E., Morrow, J.A.: PIV measurements on a delta wing with periodic blowing and suction. In: AIAA Paper 2001–2436 (2001)Google Scholar
  17. 17.
    Visser, K.D., et al.: Control of leading edge vortex breakdown by blowing. In: AIAA Paper 1988–0504 (1988)Google Scholar
  18. 18.
    Guillot, S., Gutmark, E.J., Garrison, T.J.: Delay of vortex breakdown over a delta wing via near core blowing. In: AIAA Paper 1998–0315 (1998)Google Scholar
  19. 19.
    Greenblatt, D., Kastantin, Y., Nayeri, C.N., Paschereit, C.O.: Delta-wing flow control using dielectric barrier discharge actuators. AIAA J. 46(6), 1554–1560 (2008)CrossRefGoogle Scholar
  20. 20.
    Kölzsch, A., Breitsamter, C.: Vortex-flow manipulation on a generic delta wing configuration. J. Aircraft (2014). doi: 10.2514/1.C032231
  21. 21.
    Hummel, D.: Review of the second international vortex flow experiment (VFE-2). In: AIAA Paper 2008–377 (2008)Google Scholar
  22. 22.
    Luckring, J.M., Hummel, D.: What was learned from the VFE-2 experiments? In: AIAA Paper 2008–383 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anja Kölzsch
    • 1
    Email author
  • Sophie Blanchard
    • 1
  • Christian Breitsamter
    • 1
  1. 1.Institute of Aerodynamics and Fluid MechanicsTechnische Universität MünchenGarchingGermany

Personalised recommendations