Advertisement

Wall Modeled Large Eddy Simulation of a Delta Wing with Round Leading Edge

  • Christian ZwergerEmail author
  • Stefan Hickel
  • Christian Breitsamter
  • Nikolaus Adams
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 132)

Abstract

We performed wall modeled large eddy simulation of the flow field around a delta wing with sweep angle of \(65^{\circ }\) and round leading edge at angles of attack of \(13^{\circ }\), \(18^{\circ }\), and \(23^{\circ }\). Qualitatively, the numerical simulations correctly predict the flow phenomena for all angles of attack considered. Quantitatively, the results show reasonable agreement with experimental measurements of steady and unsteady surface pressures, velocity distributions, and vortex breakdown position and frequency.

Keywords

Large Eddy Simulation Vortex Core Secondary Vortex Primary Vortex Vortex Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Breitsamter, C.: Turbulente Strömungsstrukturen an Flugzeugkonfigurationen mit Vorderkantenwirbeln. Herbert Utz Verlag Wissenschaft, München (1997)Google Scholar
  2. 2.
    Breitsamter, C.: Unsteady flow phenomena associated with leading-edge phenomena. Progr. Aerosp. Sci. 44, 48–65 (2008)CrossRefGoogle Scholar
  3. 3.
    Chen, Z.L., Hickel, S., Devesa, A., Berland, J., Adams, N.A.: Wall modeling for implicit large-eddy simulation and immersed-interface methods. Theor. Comput. Fluid Dyn. 28, 1–21 (2014)CrossRefGoogle Scholar
  4. 4.
    Chu, J., Luckring, J.M.: Experimental surface pressure data obtained on \(65^{\circ }\) delta wing across Reynolds number and mach number ranges. NASA Technical Memorandum 4645, vol. 3. Medium-Radius Leading Edge (1996)Google Scholar
  5. 5.
    Crivellini, A., D’Alessandro, V., Bassi, F.: High-order discontinuous Galerkin RANS solutions of the incompressible flow over a delta wing. Comput. Fluids 88, 663–677 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Drougge, G.: The international vortex flow experiment for computer code validation. In: ICAS-Proceedings, Jerusalem (1988)Google Scholar
  7. 7.
    Furman, A., Breitsamter, C.: Investigation of flow phenomena on generic delta wing. In: ICAS-Proceedings, Hamburg (2006)Google Scholar
  8. 8.
    Furman, A., Breitsamter, C.: Experimental investigations on the VFE-2 configuration at TU Munich, Germany. NATO STO, Summary Report AVT-113, Chapter 21 (2009)Google Scholar
  9. 9.
    Grilli, M., Hickel, S., Hu, X.Y., Adams, N.A.: Conservative immersed boundary method for compressible viscous flows. Annual Report 2009 of the Sonderforschungsbereich/Transregio 40 (TRR40). Technische Universität München (2009)Google Scholar
  10. 10.
    Hickel, S., Adams, N.A., Domaradzki, J.A.: An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213, 413–436 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hickel, S., Egerer, C.P., Larsson, J.: Subgrid-scale modeling for implicit Large Eddy Simulation of compressible flows and shock turbulence interaction. Phys. Fluids (2014)Google Scholar
  12. 12.
    Hummel, D.: Effects of boundary layer formation on the vortical flow above slender delta wings. In: RTO Symposium on Enhancement of NATO Military Flight Vehicle Performance by Management of Interacting Boundary Layer Transition and Separation, Prague, Czech Republic (2004)Google Scholar
  13. 13.
    Hummel, D.: The international vortex flow experiment 2 (VFE-2): objectives and overview. NATO STO, Summary Report AVT-113, Chapter 17 (2009)Google Scholar
  14. 14.
    Luckring, J.M.: Initial experiments and analysis of blunt-edge vortex flows. NATO STO, Summary Report AVT-113, Chapter 18 (2009)Google Scholar
  15. 15.
    Mary, I.: Large Eddy simulation of vortex breakdown behind a delta wing. Int. J. Heat Fluid Flow 24, 596–605 (2003)CrossRefGoogle Scholar
  16. 16.
    Tangermann, E., Furman, A.: Detached Eddy simulation compared with wind tunnel results of a delta wing with sharp leading edge and vortex breakdown. In: 30th AIAA Applied Aerodynamics Conference (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian Zwerger
    • 1
    Email author
  • Stefan Hickel
    • 1
  • Christian Breitsamter
    • 1
  • Nikolaus Adams
    • 1
  1. 1.Lehrstuhl für Aerodynamik und Strömungsmechanik, Technische Universität MünchenMunichGermany

Personalised recommendations