Extracting Meta-information by Using Network Analysis Tools

  • Agnieszka Stawinoga
  • Maria SpanoEmail author
  • Nicole Triunfo
Conference paper
Part of the Studies in Theoretical and Applied Statistics book series (STAS)


This paper has been developed in the frame of the European project BLUE-ETS (Economic and Trade Statistics), in the work-package devoted to propose new tools for collecting and analyzing data. In order to obtain business information by documentary repositories, we refer to documents produced with nonstatistical aims. The use of secondary sources, typical of data and text mining, is an opportunity not sufficiently explored by National Statistical Institutes. The use of textual data is still viewed as too problematic, because of the complexity and the expensiveness of the pre-processing procedures and often for the lack of suitable analytical tools. In this paper we pay attention to the problems related to the pre-processing procedures, mainly concerning with semantic tagging. We propose a semi-automatic strategy based on network analysis tools to create financial-economic meta-information useful for the semantic annotation of the terms.


Betweenness Centrality Jaccard Index Network Analysis Tool Automatic Text Analysis High Order Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by the European Project BLUE-ETS.

This paper derives by a strict and continuous collaboration among the authors. Anyway Sects. 1 and 4 may be mainly attributed to M. Spano; Sect. 3 to A. Stawinoga; Sects. 2 and 5 to N. Triunfo.


  1. 1.
    Bader, D.A., Madduri, K.: Parallel algorithms for evaluating centrality indices in realworld networks. In: Proceedings of the 35th International Conference on Parallel Processing (ICPP). IEEE Computer Society, Columbus, OH (2006)Google Scholar
  2. 2.
    Balbi, S., Stawinoga, A.: The use of Network Analysis tools for dimensionality reduction in Text Mining, SLDS 2012, Florence. 333944&nomeDocente=SIMONA&cognomeDocente=BALBI (2012)
  3. 3.
    Batagelj, V., Mrvar, A., Zaveršnik, M.: Network analysis of dictionaries. In: Erjavec, T., Gros, J. (eds.) Jezikovne tehnologije /Language Technologies, Ljubljana, pp. 135–142 (2002)Google Scholar
  4. 4.
    Benzécri, J.P.: Pratique de l’Analyse Des Données, Linguistique e Lexicologie. Dunod, Paris (1981)zbMATHGoogle Scholar
  5. 5.
    Bolasco, S.: Sur différentes stratégies dans une analyse des forms textuelles: une expérimentation à partir de données d’enquête. In: Bécue, M., Lebart, L., Rajadell, N. (eds.) JADT 1990, UPC, Barcelona, pp. 69–88 (1990)Google Scholar
  6. 6.
    Bolasco, S.: Meta-data and strategies of textual data analysis: problems and instruments. In: Hayashi et al. (eds.) Data Science, Classification and Related Methods (Proceedings V IFCS - Kobe, 1996). Springer, Tokio, pp. 468–479 (1998)Google Scholar
  7. 7.
    Bolasco, S., Canzonetti, A., Capo, F.: Text Mining: Uno strumento strategico per imprese e istituzioni. Cisu Editore, Roma (2005)Google Scholar
  8. 8.
    De Mauro, T.: I vocabolari ieri e oggi. In: Il vocabolario del 2000, a cura di IBM Italia, Roma (1989)Google Scholar
  9. 9.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1979)CrossRefGoogle Scholar
  10. 10.
    Lebart, L., Salem, A.: Statistique textuelle. Dunod, Paris (1994)Google Scholar
  11. 11.
    Reinert, M.: Un logiciel d’analyse lexicale: ALCESTE. Les Cahiers de l’analyse des données, XI 4, 471–484 (1986)Google Scholar
  12. 12.
    Salem, A.: Pratique des segments répétés. Essai de statistique textuelle. Klincksieck, Paris (1987)Google Scholar
  13. 13.
    Sullivan, D.: Document Warehousing and Text Mining: Techniques for Improving Business Operations, Marketing and Sales. Wiley, New York (2001)Google Scholar
  14. 14.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zampolli, A., Calzolari, N.: Problemi, metodi e prospettive nel trattamento del linguaggio naturale: l’evoluzione del concetto di risorse linguistiche. In: Cipriani, R., Bolasco, S. (eds.), pp. 51–68 (1995)Google Scholar
  16. 16.
    Zanasi, A.: Text Mining and Its Applications to Intelligence, CRM and Knowledge Management. WIT Press, Southampton (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Agnieszka Stawinoga
    • 1
  • Maria Spano
    • 1
    Email author
  • Nicole Triunfo
    • 1
  1. 1.University of Naples Federico IINapoliItaly

Personalised recommendations