International Symposium on Graph Drawing and Network Visualization

Graph Drawing and Network Visualization pp 545-547 | Cite as

L-Visibility Drawings of IC-Planar Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)


A visibility drawing \(\varGamma \) of a planar graph G maps the vertices into non-overlapping horizontal segments (bars), and the edges into vertical segments (visibilities), each connecting the two bars corresponding to its two end-vertices.


  1. 1.
    Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(3), 421–438 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montecchiani, F.: Recognizing and drawing IC-planar graphs. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 295–308. Springer, Heidelberg (2015)Google Scholar
  3. 3.
    Dean, A.M., Evans, W.S., Gethner, E., Laison, J.D., Safari, M.A., Trotter, W.T.: Bar k-visibility graphs. J. Graph Algorithms Appl. 11(1), 45–59 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Didimo, W., Liotta, G.: The crossing angle resolution in graph drawing. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory. Springer, New York (2012)Google Scholar
  5. 5.
    Evans, W.S., Kaufmann, M., Lenhart, W., Mchedlidze, T., Wismath, S.K.: Bar 1-visibility graphs vs. other nearly planar graphs. J. Graph Algorithms Appl. 18(5), 721–739 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Evans, W.S., Liotta, G., Montecchiani, F.: Simultaneous visibility representations of plane \(st\)-graphs using L-shapes. In: Mayr, E.W., (ed.) WG 2015. LNCS. Springer (2015, to appear)Google Scholar
  7. 7.
    Král, D., Stacho, L.: Coloring plane graphs with independent crossings. J. Graph Theory 64(3), 184–205 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    Liotta, G., Montecchiani, F.: L-visibility drawings of IC-planar graphs. arXiv, (2015)
  9. 9.
    Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discr. Comput. Geom. 1(1), 321–341 (1986)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Zhang, X., Liu, G.: The structure of plane graphs with independent crossings and its applications to coloring problems. Central Europ. J. Math. 11(2), 308–321 (2013)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Università degli Studi di PerugiaPerugiaItaly

Personalised recommendations