International Symposium on Graph Drawing and Network Visualization

Graph Drawing and Network Visualization pp 502-514 | Cite as

Shape-Based Quality Metrics for Large Graph Visualization

  • Peter Eades
  • Seok-Hee Hong
  • Karsten Klein
  • An Nguyen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)

Abstract

We propose a new family of quality metrics for graph drawing; in particular, we concentrate on larger graphs. We illustrate these metrics with examples and apply the metrics to data from previous experiments, leading to the suggestion that the new metrics are effective.

References

  1. 1.
    Chimani, M., et al.: Graph drawings with less stress and fewer crossings are preferable. In: Duncan, C., Symvonis, A. (eds.) GD2014. LNCS, vol. 8871, pp. 523–524. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Eades, P., Whitesides, S.: The realization problem for euclidean minimum spanning trees in NP-hard. Algorithmica 16(1), 60–82 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29(4), 551–558 (1983)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  5. 5.
    Gansner, E.R., Hu, Y., Krishnan, S.: COAST: a convex optimization approach to stress-based embedding. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 268–279. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Gansner, E.R., Yifan, H., North, S.C.: A maxent-stress model for graph layout. IEEE Trans. Vis. Comput. Graph. 19(6), 927–940 (2013)CrossRefGoogle Scholar
  7. 7.
    Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  9. 9.
    Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: NIPS 2002, pp. 833–840 (2002)Google Scholar
  10. 10.
    Hu, Y., Koren, Y.: Extending the spring-electrical model to overcome warping effects. In: Eades, P., Ertl, T., Shen, H.-W. (eds.) PacificVis2009, pp. 129–136. IEEE (2009)Google Scholar
  11. 11.
    Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: Fujishiro, I., Li, H., Ma, K. L. (eds.) IEEE PacificVis2008, pp. 41–46 (2008)Google Scholar
  12. 12.
    Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: KDD2002, pp. 538–543. ACM (2002)Google Scholar
  13. 13.
    Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–245. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Marner, M.R., Smith, R.T., Thomas, B.H., Klein, K., Eades, P., Hong, S.-H.: GION: interactively untangling large graphs on wall-sized displays. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 113–124. Springer, Heidelberg (2014) Google Scholar
  15. 15.
    Nguyen, Q.H., Eades, P., Hong, S.-H.: On the faithfulness of graph visualizations. In: Carpendale, S., Chen, W., Hong, S. (eds.) PacificVis2013, pp. 209–216. IEEE (2013)Google Scholar
  16. 16.
    Preparata, F., Shamos, M.: Computational Geometry - An Introduction. Springer, New York (1985)CrossRefGoogle Scholar
  17. 17.
    Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  18. 18.
    Purchase, H.C., Allder, J.-A., Carrington, D.A.: Graph layout aesthetics in uml diagrams: user preferences. J. Graph Algorithms Appl. 6(3), 255–279 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Purchase, H.C., Carrington, D.A., Allder, J.-A.: Empirical evaluation of aesthetics-based graph layout. Empirical Softw. Eng. 7(3), 233–255 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Purchase, H.C., Cohen, R.F., James, M.I.: Validating graph drawing aesthetics. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  21. 21.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man. Cybern. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tamassia, R., Batini, C., Di Battista, G.: Automatic graph drawing and readability of diagrams. Technical Report, Universita di Roma La Sapienza, Dipartimento do Informatica e Sistemistica, 01.87 (1987)Google Scholar
  23. 23.
    Tamassia, R., Batini, C., Talamo, M.: An algorithm for automatic layout of entity-relationship diagrams. In: Davis, C.G., Jajodia, S., Ng, P.A., Yeh, R.T. (eds.) ER83, pp. 421–439. North-Holland (1983)Google Scholar
  24. 24.
    Toussaint, G.: Computational Morphology. North Holland, Amsterdam (1988)MATHGoogle Scholar
  25. 25.
    Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1(2), 103–110 (2002)CrossRefGoogle Scholar
  26. 26.
    Wilkinson, L., Anand, A., Grossman, R.L.: Graph-theoretic scagnostics. In: Stasko, J., Ward, M.O. (eds.) InfoVis2005, p. 21. IEEE (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Peter Eades
    • 1
  • Seok-Hee Hong
    • 1
  • Karsten Klein
    • 2
  • An Nguyen
    • 1
  1. 1.University of SydneySydneyAustralia
  2. 2.Monash UniversityMelbourneAustralia

Personalised recommendations