International Symposium on Graph Drawing and Network Visualization

Graph Drawing and Network Visualization pp 472-486 | Cite as

Pixel and Voxel Representations of Graphs

  • Md. Jawaherul Alam
  • Thomas Bläsius
  • Ignaz Rutter
  • Torsten Ueckerdt
  • Alexander Wolff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)


We study contact representations for graphs, which we call pixel representations in 2D and voxel representations in 3D. Our representations are based on the unit square grid whose cells we call pixels in 2D and voxels in 3D. Two pixels are adjacent if they share an edge, two voxels if they share a face. We call a connected set of pixels or voxels a blob. Given a graph, we represent its vertices by disjoint blobs such that two blobs contain adjacent pixels or voxels if and only if the corresponding vertices are adjacent. We are interested in the size of a representation, which is the number of pixels or voxels it consists of.

We first show that finding minimum-size representations is NP-complete. Then, we bound representation sizes needed for certain graph classes. In 2D, we show that, for k-outerplanar graphs with n vertices, \(\varTheta (kn)\) pixels are always sufficient and sometimes necessary. In particular, outerplanar graphs can be represented with a linear number of pixels, whereas general planar graphs sometimes need a quadratic number. In 3D, \(\varTheta (n^2)\) voxels are always sufficient and sometimes necessary for any n-vertex graph. We improve this bound to \(\varTheta (n\cdot \tau )\) for graphs of treewidth \(\tau \) and to \(O((g+1)^2n\log ^2n)\) for graphs of genus g. In particular, planar graphs admit representations with \(O(n\log ^2n)\) voxels.


  1. 1.
    Aerts, N., Felsner, S.: Vertex contact graphs of paths on a grid. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 56–68. Springer, Heidelberg (2014) Google Scholar
  2. 2.
    Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S., Ueckerdt, T.: Computing cartograms with optimal complexity. Discrete Comput. Geom. 50(3), 784–810 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alam, M.J., Bläsius, T., Rutter, I., Ueckerdt, T., Wolff, A.: Pixel and voxel representations of graphs. Arxiv report (2015).
  4. 4.
    Badent, M., Binucci, C., Di Giacomo, E., Didimo, W., Felsner, S., Giordano, F., Kratochvíl, J., Palladino, P., Patrignani, M., Trotta, F.: Homothetic triangle contact representations of planar graphs. In: Canadian Conference on Computational Geometry (CCCG 2007), pp. 233–236 (2007)Google Scholar
  5. 5.
    Bezdek, A.: On the number of mutually touching cylinders. Comb. Comput. Geom. 52, 121–127 (2005)MathSciNetGoogle Scholar
  6. 6.
    Bezdek, K., Reid, S.: Contact graphs of unit sphere packings revisited. J. Geom. 104(1), 57–83 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bhatt, S.N., Cosmadakis, S.S.: The complexity of minimizing wire lengths in VLSI layouts. Inform. Process. Lett. 25(4), 263–267 (1987)CrossRefMATHGoogle Scholar
  8. 8.
    Biedl, T.: On triangulating \(k\)-outerplanar graphs. Discrete Appl. Math. 181, 275–279 (2015). MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Biedl, T.C.: Small drawings of outerplanar graphs, series-parallel graphs, and other planar graphs. Discrete Comput. Geom. 45(1), 141–160 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bodlaender, H.L.: Treewidth: algorithmic techniques and results. In: Prívara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  11. 11.
    Bose, P., Everett, H., Fekete, S.P., Houle, M.E., Lubiw, A., Meijer, H., Romanik, K., Rote, G., Shermer, T.C., Whitesides, S., Zelle, C.: A visibility representation for graphs in three dimensions. J. Graph Algorithms Appl. 2(3), 1–16 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Brandenburg, F.J., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Liotta, G., Mutzel, P.: Selected open problems in graph drawing. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  13. 13.
    Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(3), 421–438 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bremner, D., et al.: On representing graphs by touching cuboids. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 187–198. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Trans. Algorithms 4(1), 8–28 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cano, R., Buchin, K., Castermans, T., Pieterse, A., Sonke, W., Speckmann, B.: Mosaic drawings and cartograms. Comput. Graph. Forum 34(3), 361–370 (2015)CrossRefGoogle Scholar
  17. 17.
    Chan, T.M., Goodrich, M.T., Kosaraju, S.R., Tamassia, R.: Optimizing area and aspect ratio in straight-line orthogonal tree drawings. Comput. Geom. Theory Appl. 23(2), 153–162 (2002)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Chaplick, S., Kobourov, S.G., Ueckerdt, T.: Equilateral L-contact graphs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 139–151. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. Algorithmica 54(1), 25–53 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Dolev, D., Leighton, T., Trickey, H.: Planar embedding of planar graphs. Adv. Comput. Res. 2, 147–161 (1984)Google Scholar
  21. 21.
    Dujmović, V., Morin, P., Wood, D.: Layered separators for queue layouts, 3d graph drawing and nonrepetitive coloring. In: Foundations of Computer Science (FOCS 2013), pp. 280–289. IEEE (2013)Google Scholar
  22. 22.
    Duncan, C.A., Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G.: Optimal polygonal representation of planar graphs. Algorithmica 63(3), 672–691 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Evans, W., Kaufmann, M., Lenhart, W., Mchedlidze, T., Wismath, S.: Bar 1-visibility graphs and their relation to other nearly planar graphs. J. Graph Algorithms Appl. 18(5), 721–739 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Fan, J.-H., Lin, C.-C., Lu, H.-I., Yen, H.-C.: Width-optimal visibility representations of plane graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 160–171. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  25. 25.
    Felsner, S.: Rectangle and square representations of planar graphs. Thirty Essays on Geometric Graph Theory, pp. 213–248 (2013)Google Scholar
  26. 26.
    Felsner, S., Francis, M.C.: Contact representations of planar graphs with cubes. In: Symposium on Computational Geometry (SoCG 2011), pp. 315–320. ACM (2011)Google Scholar
  27. 27.
    Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar graphs. J. Graph Theory 51(1), 53–81 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    de Fraysseix, H., de Mendez, P.O.: Representations by contact and intersection of segments. Algorithmica 47(4), 453–463 (2007)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Comb. Prob. Comput. 3, 233–246 (1994)CrossRefMATHGoogle Scholar
  30. 30.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Hliněný, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Math. 229(1–3), 101–124 (2001)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Math. Phy. Kla. 88, 141–164 (1936)Google Scholar
  33. 33.
    Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Foundations of Computer Science (FOCS 1980), pp. 270–281. IEEE (1980)Google Scholar
  34. 34.
    Pach, J., Thiele, T., Tóth, G.: Three-dimensional grid drawings of graphs. In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 47–51. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  35. 35.
    Patrignani, M.: Complexity results for three-dimensional orthogonal graph drawing. J. Discrete Algorithms 6(1), 140–161 (2008)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Schnyder, W.: Embedding planar graphs on the grid. In: Symposium on Discrete Algorithms (SODA 1990), pp. 138–148. ACM-SIAM (1990)Google Scholar
  37. 37.
    Tamassia, R., Tollis, I.G.: A unified approach a visibility representation of planar graphs. Discrete Comput. Geom. 1, 321–341 (1986)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Thomassen, C.: Interval representations of planar graphs. J. Comb. Theory B 40(1), 9–20 (1986)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Zong, C.: The kissing numbers of tetrahedra. Discrete Comput. Geom. 15(3), 239–252 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Md. Jawaherul Alam
    • 1
  • Thomas Bläsius
    • 2
  • Ignaz Rutter
    • 2
  • Torsten Ueckerdt
    • 2
  • Alexander Wolff
    • 3
  1. 1.University of ArizonaTucsonUSA
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Universität WürzburgWürzburgGermany

Personalised recommendations