International Symposium on Graph Drawing and Network Visualization

Graph Drawing and Network Visualization pp 460-471 | Cite as

Towards Characterizing Graphs with a Sliceable Rectangular Dual

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)


Let \(\mathcal {G} \) be a plane triangulated graph. A rectangular dual of \(\mathcal {G} \) is a partition of a rectangle R into a set \(\mathcal {R} \) of interior-disjoint rectangles, one for each vertex, such that two regions are adjacent if and only if the corresponding vertices are connected by an edge. A rectangular dual is sliceable if it can be recursively subdivided along horizontal or vertical lines. A graph is rectangular if it has a rectangular dual and sliceable if it has a sliceable rectangular dual. There is a clear characterization of rectangular graphs. However, a full characterization of sliceable graphs is still lacking. The currently best result (Yeap and Sarrafzadeh, 1995) proves that all rectangular graphs without a separating 4-cycle are sliceable. In this paper we introduce a recursively defined class of graphs and prove that these graphs are precisely the nonsliceable graphs with exactly one separating 4-cycle.


  1. 1.
    Ackerman, E., Barequet, G., Pinter, R.Y., Romik, D.: The number of guillotine partitions in d dimensions. Inf. Proces. Letters 98(4), 162–167 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G., Ueckerdt, T.: Computing cartograms with optimal complexity. In: SOCG 2012, pp. 21–30 (2012)Google Scholar
  3. 3.
    de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted plane graphs. Disc. Math. 309(7), 1794–1812 (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Bhasker, J., Sahni, S.: A linear time algorithm to check for the existence of a rectangular dual of a planar triangulated graph. Networks 17(3), 307–317 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bhattacharya, B., Sur-Kolay, S.: On the family of inherently nonslicible floorplans in VLSI layout design. In: ISCAS 1991, pp. 2850–2853. IEEE (1991)Google Scholar
  6. 6.
    Buchin, K., Speckmann, B., Verdonschot, S.: Optimizing regular edge labelings. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 117–128. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Dasgupta, P., Sur-Kolay, S.: Slicible rectangular graphs and their optimal floorplans. ACM Trans. Design Automation of Electronic Systems 6(4), 447–470 (2001)Google Scholar
  8. 8.
    Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal rectangular layouts. In: SOCG 2009, pp. 267–276 (2009)Google Scholar
  9. 9.
    Fusy, É.: Transversal structures on triangulations: A combinatorial study and straight-line drawings. Disc. Math. 309(7), 1870–1894 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    He, X.: On floor-plan of plane graphs. SIAM J. Comp. 28(6), 2150–2167 (1999)CrossRefMATHGoogle Scholar
  11. 11.
    Kant, G., He, X.: Two algorithms for finding rectangular duals of planar graphs. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 396–410. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Koźmiński, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 15(2), 145–157 (1985)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    van Kreveld, M., Speckmann, B.: On rectangular cartograms. Comp. Geom. 37(3), 175–187 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Liao, C.C., Lu, H.I., Yen, H.C.: Compact floor-planning via orderly spanning trees. J. Algorithms 48(2), 441–451 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Mumford, E.: Drawing Graphs for Cartographic Applications. Ph.D. thesis, TU Eindhoven (2008).
  16. 16.
    Otten, R.: Efficient floorplan optimization. In: ICCAD’83. vol. 83, pp. 499–502 (1983)Google Scholar
  17. 17.
    Stockmeyer, L.: Optimal orientations of cells in slicing floorplan designs. Inf. Control 57(2), 91–101 (1983)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sur-Kolay, S., Bhattacharya, B.: Inherent nonslicibility of rectangular duals in VLSI floorplanning. In: Kumar, S., Nori, K.V. (eds.) FSTTCS 1988. LNCS, vol. 338, pp. 88–107. Springer, Heidelberg (1988) CrossRefGoogle Scholar
  19. 19.
    Szepieniec, A.A., Otten, R.H.: The genealogical approach to the layout problem. In: Proceedings of the 17th Conference on Design Automation, pp. 535–542. IEEE (1980)Google Scholar
  20. 20.
    Ungar, P.: On diagrams representing maps. J. L. Math. Soc. 1(3), 336–342 (1953)CrossRefGoogle Scholar
  21. 21.
    Yao, B., Chen, H., Cheng, C.K., Graham, R.: Floorplan representations: Complexity and connections. ACM Trans. Design Auto. of Elec. Sys. 8(1), 55–80 (2003)Google Scholar
  22. 22.
    Yeap, G., Sarrafzadeh, M.: Sliceable floorplanning by graph dualization. SIAM J. Disc. Math. 8(2), 258–280 (1995)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Yeap, K.H., Sarrafzadeh, M.: Floor-planning by graph dualization: 2-concave rectilinear modules. SIAM J. Comp. 22(3), 500–526 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceETH ZürichZürichSwitzerland
  2. 2.Department of Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations