International Symposium on Graph Drawing and Network Visualization

Graph Drawing and Network Visualization pp 409-422 | Cite as

A Universal Point Set for 2-Outerplanar Graphs

  • Patrizio Angelini
  • Till Bruckdorfer
  • Michael Kaufmann
  • Tamara Mchedlidze
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)

Abstract

A point set \(S \subseteq \mathbb {R}^2\) is universal for a class \(\mathcal G\) if every graph of \(\mathcal{G}\) has a planar straight-line embedding on S. It is well-known that the integer grid is a quadratic-size universal point set for planar graphs, while the existence of a sub-quadratic universal point set for them is one of the most fascinating open problems in Graph Drawing. Motivated by the fact that outerplanarity is a key property for the existence of small universal point sets, we study 2-outerplanar graphs and provide for them a universal point set of size \(O(n \log n)\).

References

  1. 1.
    Angelini, P., Di Battista, G., Kaufmann, M., Mchedlidze, T., Roselli, V., Squarcella, C.: Small point sets for simply-nested planar graphs. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 75–85. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Angelini, P., Bruckdorfer, T., Kaufmann, M., Mchedlidze, T.: A universal point set for 2-outerplanar graphs (2015). CoRR abs/1508.05784
  3. 3.
    Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and universal point sets. J. Graph Algorithms Appl. 18(2), 177–209 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Binucci, C., Di Giacomo, E., Didimo, W., Estrella-Balderrama, A., Frati, F., Kobourov, S., Liotta, G.: Upward straight-line embeddings of directed graphs into point sets. CGTA 43, 219–232 (2010)MATHGoogle Scholar
  5. 5.
    Bose, P.: On embedding an outer-planar graph in a point set. CGTA 23(3), 303–312 (2002)MATHGoogle Scholar
  6. 6.
    Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl. 10(2), 353–366 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fáry embeddings of planar graphs. In: Simon, J. (ed.) STOC ’88, pp. 426–433. ACM (1988)Google Scholar
  8. 8.
    Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. J. Discrete Algorithms 30, 101–112 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gritzmann, P., Pach, B.M.J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. Am. Math. Monthly 98, 165–166 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) SODA ’90, pp. 138–148. SIAM (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Till Bruckdorfer
    • 1
  • Michael Kaufmann
    • 1
  • Tamara Mchedlidze
    • 2
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany
  2. 2.Institute of Theoretical InformaticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations