Advertisement

Vertical Visibility Among Parallel Polygons in Three Dimensions

  • Radoslav Fulek
  • Rados Radoicic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)

Abstract

Let \(\mathcal {C}=\{C_1,\ldots , C_n\}\) denote a collection of translates of a regular convex k-gon in the plane with the stacking order. The collection \(\mathcal {C}\) forms a visibility clique if for every \(i<j\) the intersection \(C_i\) and \(C_j\) is not covered by the elements that are stacked between them, i.e., \((C_i\cap C_j) \setminus \bigcup _{i<l<j}C_l\not =\emptyset \).

We show that if \(\mathcal {C}\) forms a visibility clique its size is bounded from above by \(O(k^4)\) thereby improving the upper bound of \(2^{2^{k}}\) from the aforementioned paper. We also obtain an upper bound of \(2^{2\left( {\begin{array}{c}k\\ 2\end{array}}\right) +2}\) on the size of a visibility clique for homothetes of a convex (not necessarily regular) k-gon.

Notes

Acknowledgement

We would like to thank Martin Balko for telling us about [9].

References

  1. 1.
    Babilon, R., Nyklová, H., Pangrác, O., Vondrák, J.: Visibility representations of complete graphs. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 333–341. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  2. 2.
    Balko, M., Cibulka, J., Král, K., Kynčl, J.: Ramsey numbers of ordered graphs. arXiv:1310.7208v3
  3. 3.
    Bose, P., Everett, H., Fekete, S.P., Houle, M.E., Lubiw, A., Meijer, H., Romanik, K., Rote, G., Shermer, T.C., Whitesides, S., Zelle, C.: A visibility representation for graphs in three dimensions. J. Graph Algorithm Appl. 2(3), 1–16 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cohen, R.F., Eades, P., Lin, T., Ruskey, F.: Three-dimensional graph drawing. Algorithmica 17(2), 199–208 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Conlon, D., Fox, J., Lee, C., Sudakov, B.: Ordered Ramsey numbers. arXiv:1410.5292v1
  6. 6.
    Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166 (1950)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. In: Gessel, I., Rota, G.-C. (eds.) Classic Papers in Combinatorics. Modern Birkhäuser Classics, pp. 49–56. Birkhäuser Boston, Boston (1987)Google Scholar
  8. 8.
    Fekete, S.P., Houle, M.E., Whitesides, S.: New results on a visibility representation of graphs in 3D. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 234–241. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  9. 9.
    Milans, K.G., Stolee, D., West, D.B.: Ordered ramsey theory and track representations of graphs. http://www.math.illinois.edu/stolee/Papers/MSW12-OrderedRamsey.pdf
  10. 10.
    Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone trees: animated 3D visualizations of hierarchical information. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1991, pp. 189–194. ACM, New York, NY, USA (1991)Google Scholar
  11. 11.
    Romanik, K.: Directed VR-representable graphs have unbounded dimension. In: Tamassia, R., Tollis, I.G. (eds.) Graph Drawing. LNCS, vol. 894, pp. 177–181. Springer, Berlin Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete Comput. Geom. 1(1), 321–341 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Štola, J.: 3D visibility representations by regular polygons. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 323–333. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. 14.
    Wismath, S.K.: Characterizing bar line-of-sight graphs. In: Proceedings of the First Annual Symposium on Computational Geometry, SCG 1885, pp. 147–152. ACM, New York, NY, USA (1985)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.Baruch College, CUNYNew York CityUSA

Personalised recommendations