International Symposium on Graph Drawing and Network Visualization

Graph Drawing and Network Visualization pp 309-320 | Cite as

Simple Realizability of Complete Abstract Topological Graphs Simplified

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)

Abstract

An abstract topological graph (briefly an AT-graph) is a pair \(A=(G,\mathcal {X})\) where \(G=(V,E)\) is a graph and \(\mathcal {X}\subseteq \left( {\begin{array}{c}E\\ 2\end{array}}\right) \) is a set of pairs of its edges. The AT-graph A is simply realizable if G can be drawn in the plane so that each pair of edges from \(\mathcal {X}\) crosses exactly once and no other pair crosses. We characterize simply realizable complete AT-graphs by a finite set of forbidden AT-subgraphs, each with at most six vertices. This implies a straightforward polynomial algorithm for testing simple realizability of complete AT-graphs, which simplifies a previous algorithm by the author.

References

  1. 1.
    Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Hackl, T., Pammer, J., Pilz, A., Ramos, P., Salazar, G., Vogtenhuber, B.: All good drawings of small complete graphs, EuroCG 2015, Book of abstracts, pp. 57–60 (2015)Google Scholar
  2. 2.
    Aichholzer, O.: Personal communication. 2014Google Scholar
  3. 3.
    Armas-Sanabria, L., González-Acuña, F., Rodríguez-Viorato, J.: Self-intersection numbers of paths in compact surfaces. J. Knot Theor. Ramif. 20(3), 403–410 (2011)CrossRefMATHGoogle Scholar
  4. 4.
    Balko, M., Fulek, R., Kynčl, J.: Crossing numbers and combinatorial characterization of monotone drawings of \(K_n\). Discrete Comput. Geom. 53(1), 107–143 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chimani, M.: Facets in the crossing number polytope. SIAM J. Discrete Math. 25(1), 95–111 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Farb, B., Thurston, B.: Homeomorphisms and simple closed curves, unpublished manuscriptGoogle Scholar
  7. 7.
    Gioan, E.: Complete graph drawings up to triangle mutations. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 139–150. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  8. 8.
    Harborth, H., Mengersen, I.: Drawings of the complete graph with maximum number of crossings, In: Proceedings of the Twenty-third Southeastern International Conference on Combinatorics, Graph Theory, and Computing, (Boca Raton, FL, 1992), Congressus Numerantium, 88 pp. 225–228 (1992)Google Scholar
  9. 9.
    Hass, J., Scott, P.: Intersections of curves on surfaces. Isr. J. Math. 51(1–2), 90–120 (1985)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kratochvíl, J., Lubiw, A., Nešetřil, J.: Noncrossing subgraphs in topological layouts. SIAM J. Discrete Math. 4(2), 223–244 (1991)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kratochvíl, J., Matoušek, J.: NP-hardness results for intersection graphs. Commentationes Math. Univ. Carol. 30, 761–773 (1989)MATHGoogle Scholar
  12. 12.
    Kynčl, J.: Enumeration of simple complete topological graphs. Eur. J. Comb. 30(7), 1676–1685 (2009)CrossRefMATHGoogle Scholar
  13. 13.
    Kynčl, J.: Simple realizability of complete abstract topological graphs in P. Discrete Comput. Geom. 45(3), 383–399 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kynčl, J.: Improved enumeration of simple topological graphs. Discrete Comput. Geom. 50(3), 727–770 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Mutzel, P.: Recent advances in exact crossing minimization (extended abstract). Electron. Notes Discrete Math. 31, 33–36 (2008)CrossRefGoogle Scholar
  16. 16.
    Pach, J., Tóth, G.: How many ways can one draw a graph? Combinatorica 26(5), 559–576 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Schaefer, M., Sedgwick, E., Štefankovič, D.: Computing Dehn twists and geometric intersection numbers in polynomial time, In: Proceedings of the 20th Canadian Conference on Computational Geometry, CCCG 2008, pp. 111–114 2008Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Institute for Theoretical Computer Science, Faculty of Mathematics and PhysicsCharles UniversityPraha 1Czech Republic
  2. 2.Chair of Combinatorial Geometry, EPFL-SB-MATHGEOM-DCGÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations