On Minimizing Crossings in Storyline Visualizations

  • Irina Kostitsyna
  • Martin Nöllenburg
  • Valentin Polishchuk
  • André Schulz
  • Darren StrashEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)


In a storyline visualization, we visualize a collection of interacting characters (e.g., in a movie, play, etc.) by x-monotone curves that converge for each interaction, and diverge otherwise. Given a storyline with n characters, we show tight lower and upper bounds on the number of crossings required in any storyline visualization for a restricted case. In particular, we show that if (1) each meeting consists of exactly two characters and (2) the meetings can be modeled as a tree, then we can always find a storyline visualization with \(O(n\log n)\) crossings. Furthermore, we show that there exist storylines in this restricted case that require \(\varOmega (n\log n)\) crossings. Lastly, we show that, in the general case, minimizing the number of crossings in a storyline visualization is fixed-parameter tractable, when parameterized on the number of characters k. Our algorithm runs in time \(O(k!^2k\log k + k!^2m)\), where m is the number of meetings.



We thank the anonymous referees for their helpful comments. This research was initiated at the 2nd International Workshop on Drawing Algorithms for Networks in Changing Environments (DANCE 2015) in Langbroek, the Netherlands, supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 639.023.208. IK is supported in part by the NWO under project no. 639.023.208. VP is supported by grant 2014-03476 from the Sweden’s innovation agency VINNOVA.


  1. 1.
    Adolphson, D., Hu, T.C.: Optimal linear ordering. SIAM J. Appl. Math. 25(3), 403–423 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chung, F.R.K.: A conjectured minimum valuation tree (I. Cahit). SIAM Rev. 20(3), 601–604 (1978)CrossRefGoogle Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Alg. Disc. Meth. 4(3), 312–316 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Muelder, C., Crnovrsanin, T., Sallaberry, A., Ma, K.-L.: Egocentric storylines for visual analysis of large dynamic graphs. In: IEEE Big Data’13, pp. 56–62 (2013)Google Scholar
  6. 6.
    Pach, J., Rubin, N., Tardos, G.: On the Richter-Thomassen conjecture about pairwise intersecting closed curves. In: Discrete Algorithms (SODA’15), pp. 1506–1516 (2015)Google Scholar
  7. 7.
    Šeĭdvasser, M.A.: The optimal numbering of the vertices of a tree. Diskret. Analiz 17, 56–74 (1970)Google Scholar
  8. 8.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. System Sci. 26(3), 362–391 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybernet. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tanahashi, Y., Ma, K.-L.: Design considerations for optimizing storyline visualizations. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Irina Kostitsyna
    • 1
  • Martin Nöllenburg
    • 2
  • Valentin Polishchuk
    • 3
  • André Schulz
    • 4
  • Darren Strash
    • 5
    Email author
  1. 1.Department of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands
  2. 2.Algorithms and Complexity GroupTU WienViennaAustria
  3. 3.Communications and Transport SystemsITN, Linköping UniversityLinköpingSweden
  4. 4.LG Theoretische InformatikFernUniversität in HagenHagenGermany
  5. 5.Institute of Theoretical InformaticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations