International Symposium on Data-Driven Process Discovery and Analysis

Data-Driven Process Discovery and Analysis pp 79-106 | Cite as

Dynamic Constructs Competition Miner - Occurrence- vs. Time-Based Ageing

  • David Redlich
  • Thomas Molka
  • Wasif Gilani
  • Gordon Blair
  • Awais Rashid
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 237)

Abstract

Since the environment for businesses is becoming more competitive by the day, business organizations have to be more adaptive to environmental changes and are constantly in a process of optimization. Fundamental parts of these organizations are their business processes. Discovering and understanding the actual execution flow of the processes deployed in organizations is an important enabler for the management, analysis, and optimization of both, the processes and the business. This has become increasingly difficult since business processes are now often dynamically changing and may produce hundreds of events per second. The basis for this paper is the Constructs Competition Miner (CCM): A divide-and-conquer algorithm which discovers block-structured processes from event logs possibly consisting of exceptional behaviour. In this paper we propose a set of modifications for the CCM to enable dynamic business process discovery of a run-time process model from a stream of events. We describe the different modifications with a particular focus on the influence of individual events, i.e. ageing techniques. We furthermore investigate the behaviour and performance of the algorithm and the ageing techniques on event streams of dynamically changing processes.

Keywords

Run-time models Business Process Management Process mining Complex Event Processing Event streaming Big Data 

References

  1. 1.
    von Ammon, R., Ertlmaier, T., Etzion, O., Kofman, A., Paulus, T.: Integrating complex events for collaborating and dynamically changing business processes. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 370–384. Springer, Heidelberg (2010) Google Scholar
  2. 2.
    Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling concept drift in process mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Cattafi, M., Lamma, E., Riguzzi, F., Storari, S.: Incremental declarative process mining. In: Szczerbicki, E., Nguyen, N.T. (eds.) Smart Information and Knowledge Management. SCI, vol. 260, pp. 103–127. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  4. 4.
    Buijs, J., Van Dongen, B., Van Der Aalst, W.: A genetic algorithm for discovering process trees. In: Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  5. 5.
    Burattin, A., Sperduti, A., Van Der Aalst, W.: Heuristics miners for streaming event data. CoRR abs/1212.6383 (2012)Google Scholar
  6. 6.
    Kindler, E., Rubin, V., Schäfer, W.: Incremental workflow mining based on document versioning information. In: Li, M., Boehm, B., Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 287–301. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  7. 7.
    Kindler, E., Rubin, V., Schäfer, W.: Activity mining for discovering software process models. In: Software Engineering 2006, Fachtagung des GI-Fachbereichs Softwaretechnik, LNI, pp. 175–180. GI (2006)Google Scholar
  8. 8.
    Ko, R.K.L.: A computer scientist’s introductory guide to business process management (BPM). ACM Crossroads J. 15(4), 11–18 (2009)CrossRefGoogle Scholar
  9. 9.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 66–78. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  11. 11.
    Luckham, D.: The Power of Events: An Introduction to Complex Event Processingin Distributed Enterprise Systems. Addison-Wesley Professional, Reading (2002) Google Scholar
  12. 12.
    Maggi, F.M., Burattin, A., Cimitile, M., Sperduti, A.: Online process discovery to detect concept drifts in LTL-based declarative process models. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., Leenheer, P., Dou, D. (eds.) ODBASE 2013. LNCS, vol. 8185, pp. 94–111. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In: VLDB 2002, Proceedings of 28th International Conference on Very Large Data Bases, pp. 346–357. Morgan Kaufmann (2002)Google Scholar
  14. 14.
    OMG Inc.: Business Process Model and Notation (BPMN) Specification 2.0. formal/2011-01-03 (2011). http://www.omg.org/spec/BPMN/2.0/PDF
  15. 15.
    Redlich, D., Molka, T., Gilani, W., Blair, G., Rashid, A.: Constructs competition miner: process control-flow discovery of BP-domain constructs. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 134–150. Springer, Heidelberg (2014) Google Scholar
  16. 16.
    Redlich, D., Gilani, W., Molka, T., Drobek, M., Rashid, A., Blair, G.: Introducing a framework for scalable dynamic process discovery. In: Aveiro, D., Tribolet, J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol. 174, pp. 151–166. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  17. 17.
    Redlich, D., Blair, G., Rashid, A., Molka, T., Gilani, W.: Research challenges for business process models at run-time. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378, pp. 208–236. Springer, Heidelberg (2014) Google Scholar
  18. 18.
    Solé, M., Carmona, J.: Incremental process mining. In: Proceedings of the Workshops of the 31st International Conference on Application and Theory of Petri Nets and Other Models of Concurrency (PETRI NETS 2010) and of the 10th International Conference on Application of Concurrency to System Design (ACSD 2010). CEURWorkshop Proceedings, pp. 175190. CEUR-WS.org (2010)Google Scholar
  19. 19.
    Van Der Aalst, W., Ter Hofstede, A.: YAWL: Yet Another Workflow Language (2003)Google Scholar
  20. 20.
    Van Der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  21. 21.
    Van Der Aalst, W., Van Dongen, B.: ProM: the process mining toolkit. Ind. Eng. 489, 1–4 (2009)Google Scholar
  22. 22.
    van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  23. 23.
    Van Der Aalst, W.: Process Mining - Discovery, Conformance and Enhancementof Business Processes. Springer, Heidelberg (2011) Google Scholar
  24. 24.
    Van Der Aalst, W., Adriansyah, A., Van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. WIREs Data Min. Knowl. Discov. 2(2), 182–192 (2012)CrossRefGoogle Scholar
  25. 25.
    Weijters, A., Van Der Aalst, W., Alves de Medeiros, A.: Process mining with the heuristics miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven University of Technology (2006)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • David Redlich
    • 1
    • 2
  • Thomas Molka
    • 1
    • 3
  • Wasif Gilani
    • 1
  • Gordon Blair
    • 2
  • Awais Rashid
    • 2
  1. 1.SAP Research Center BelfastBelfastUK
  2. 2.Lancaster UniversityLancasterUK
  3. 3.University of ManchesterManchesterUK

Personalised recommendations