IMA International Conference on Cryptography and Coding

Cryptography and Coding pp 77-93 | Cite as

Tweak-Length Extension for Tweakable Blockciphers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9496)

Abstract

Tweakable blockcipher (TBC) is an extension of standard blockcipher introduced by Liskov, Rivest and Wagner in 2002. TBC is a versatile building block for efficient symmetric-key cryptographic functions, such as authenticated encryption.

In this paper we study the problem of extending tweak of a given TBC of fixed-length tweak, which is a variant of popular problem of converting a blockcipher into a TBC, i.e., blockcipher mode of operation. The problem is particularly important for known dedicated TBCs since they have relatively short tweak. We propose a simple and efficient solution, called \(\text {XTX}\), for this problem. \(\text {XTX}\) converts a TBC of fixed-length tweak into another TBC of arbitrarily long tweak, by extending the scheme of Liskov, Rivest and Wagner that converts a blockcipher into a TBC. Given a TBC of n-bit block and m-bit tweak, \(\text {XTX}\) provides \((n+m){/}2\)-bit security while conventional methods provide n / 2 or m / 2-bit security. We also show that \(\text {XTX}\) is even useful when combined with some blockcipher modes for building TBC having security beyond the birthday bound.

Keywords

Tweakable blockcipher Tweak extension Mode of operation LRW 

References

  1. 1.
    CAESAR: Competition for authenticated encryption: security, applicability, and robustness. http://competitions.cr.yp.to/caesar.html/
  2. 2.
    Skein Hash Function: SHA-3 submission (2008). http://www.skein-hash.info/
  3. 3.
    Aoki, K., Yasuda, K.: The security and performance of “GCM” when short multiplications are used instead. In: Kutyłowski, M., Yung, M. (eds.) Inscrypt 2012. LNCS, vol. 7763, pp. 225–245. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, 19–22 Oct 1997, pp. 394–403. IEEE Computer Society, Miami Beach (1997)Google Scholar
  5. 5.
    Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff backwards: increasing security by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  7. 7.
    Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cogliati, B., Lampe, R., Seurin, Y.: Tweaking Even-Mansour ciphers. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 189–208. Springer, Heidelberg (2015). Full version in Cryptology ePrint Archive, Report 2015/539. http://eprint.iacr.org/ CrossRefGoogle Scholar
  9. 9.
    Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Crowley, P.: Mercy: a fast large block cipher for disk sector encryption. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 49–63. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  11. 11.
    Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom permutation. J. Cryptol. 10(3), 151–162 (1997)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hirose, S., Sasaki, Y., Yasuda, K.: IV-FV authenticated encryption and triplet-robust decryption. In: Early Symetric Crypto, ESC 2015 (2015)Google Scholar
  13. 13.
    Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Jetchev, D., Özen, O., Stam, M.: Understanding adaptivity: random systems revisited. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 313–330. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal security. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 133–152. Springer, Heidelberg (2014) Google Scholar
  16. 16.
    Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  17. 17.
    Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  18. 18.
    Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  19. 19.
    Maurer, U.M., Pietrzak, K.: Composition of random systems: when two weak make one strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 410–427. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  20. 20.
    Mennink, B.: Optimally secure tweakable blockciphers. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 428–448. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  21. 21.
    Mennink, B.: XPX: generalized tweakable even-mansour with improved security guarantees. IACR Cryptology ePrint Archive 2015, 476 (2015)Google Scholar
  22. 22.
    Minematsu, K.: Improved security analysis of XEX and LRW modes. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 96–113. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  23. 23.
    Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  24. 24.
    Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  25. 25.
    Pietrzak, K.: Composition does not imply adaptive security. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 55–65. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  26. 26.
    Procter, G.: A note on the CLRW2 tweakable block cipher construction. IACR Cryptology ePrint Archive 2014, 111 (2014)Google Scholar
  27. 27.
    Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based MAC schemes. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 287–304. Springer, Heidelberg (2014) Google Scholar
  28. 28.
    Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  29. 29.
    Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui, M., Hirose, S.: Minalpher. A submission to CAESARGoogle Scholar
  30. 30.
    Schroeppel, R.: Hasty pudding cipher. AES submission (1998). http://www.cs.arizona.edu/rcs/hpc/
  31. 31.
    Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-length tweakable ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 405–423. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.NEC CorporationKawasakiJapan
  2. 2.Nagoya UniversityNagoyaJapan

Personalised recommendations