Framework for Knowledge Driven Optimisation Based Data Encoding for Brain Data Modelling Using Spiking Neural Network Architecture

  • Neelava Sengupta
  • Nathan Scott
  • Nikola Kasabov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 415)


From it’s initiation, the field of artificial intelligence has been inspired primarily by the human brain. Recent advances and collaboration of computational neuroscience and artificial intelligence has led to the development of spiking neural networks (SNN) that can very closely mimic behaviour of the human brain. These networks use spike codes or synaptic potentials as a source of information. On the contrary, most of the real world data sources including brain data are continuous and analogue in nature. For an SNN based pattern recognition tool, it is imperative to have a data encoding mechanism that transforms the streaming analogue spatiotemporal information to train of spikes. In this article, we propose a generalised background knowledge-driven optimisation framework for encoding brain data (fMRI, EEG and others). Further, we also formalise and implement a mixed-integer genetic algorithm based optimisation for background knowledge-driven data encoding for fMRI data and compare the performance with existing data encoding method like temporal contrast and Ben Spiker Algorithm.


Spike encoding Spiking neural network Mixed integer optimisation Neucube 


  1. 1.
    Ashby, F.G.: Statistical Analysis of fMRI Data. MIT press, Cambridge (2011)Google Scholar
  2. 2.
    Babu, B., Jehan, M.: Differential evolution for multi-objective optimization. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03, vol. 4, pp. 2696–2703. IEEE (2003)Google Scholar
  3. 3.
    Boynton, G.M., Engel, S.A., Glover, G.H., Heeger, D.J.: Linear systems analysis of functional magnetic resonance imaging in human v1. J. Neurosci. 16(13), 4207–4221 (1996)Google Scholar
  4. 4.
    Chen, C.T.: Linear System Theory and Design. Oxford University Press, Inc., Oxford (1995)Google Scholar
  5. 5.
    De Garis, H., Nawa, N.E., Hough, M., Korkin, M.: Evolving an optimal de/convolution function for the neural net modules of atr’s artificial brain project. In: International Joint Conference on Neural Networks, 1999. IJCNN’99, vol. 1, pp. 438–443. IEEE (1999)Google Scholar
  6. 6.
    de Garis, H.: An artificial brain atr’s cam-brain project aims to build/evolve an artificial brain with a million neural net modules inside a trillion cell cellular automata machine. New Gener. Comput. 12(2), 215–221 (1994)CrossRefGoogle Scholar
  7. 7.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Aappl. Mech. Eng. 186(2), 311–338 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Deep, K., Singh, K.P., Kansal, M., Mohan, C.: A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 212(2), 505–518 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Frackowiak, Richard S.J., Friston, K.J., Frith, C.D., Dolan, R.J., Mazziotta, JC.: Human brain function. San Diego, CA (2004)Google Scholar
  10. 10.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(1), 29–41 (1996)CrossRefGoogle Scholar
  11. 11.
    Fransson, P., Krüger, G., Merboldt, K.D., Frahm, J.: Mri of functional deactivation: temporal and spatial characteristics of oxygenation-sensitive responses in human visual cortex. Neuroimage 9(6), 611–618 (1999)CrossRefGoogle Scholar
  12. 12.
    Friston, K.J., Josephs, O., Rees, G., Turner, R.: Nonlinear event-related responses in fmri. Magn. Reson. Med. 39(1), 41–52 (1998)CrossRefGoogle Scholar
  13. 13.
    Gabbiani, F., Koch, C.: Coding of time-varying signals in spike trains of integrate-and-fire neurons with random threshold. Neural Comput. 8(1), 44–66 (1996)CrossRefGoogle Scholar
  14. 14.
    Gabbiani, F., Metzner, W.: Encoding and processing of sensory information in neuronal spike trains. J. Exp. Biol. 202(10), 1267–1279 (1999)Google Scholar
  15. 15.
    Gerstner, W., Kistler, W.M.: Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge (2002)Google Scholar
  16. 16.
    Glover, G.H.: Deconvolution of impulse response in event-related bold fmri 1. Neuroimage 9(4), 416–429 (1999)CrossRefGoogle Scholar
  17. 17.
    Hafiz, F., Shafie, A.A.: Encoding of facial images into illumination-invariant spike trains. In: 2012 International Conference on Computer and Communication Engineering (ICCCE), pp. 132–137. IEEE (2012)Google Scholar
  18. 18.
    Hough, M., De Garis, H., Korkin, M., Gers, F., Nawa, N.E.: Spiker: analog waveform to digital spiketrain conversion in atrs artificial brain (cam-brain) project. In: International Conference on Robotics and Artificial Life. Citeseer (1999)Google Scholar
  19. 19.
    Iakymchuk, T., Rosado-Munoz, A., Bataller-Mompean, M., Guerrero-Martinez, J., Frances-Villora, J., Wegrzyn, M., Adamski, M.: Hardware-accelerated spike train generation for neuromorphic image and video processing. In: 2014 IX Southern Conference on Programmable Logic (SPL), pp. 1–6. IEEE (2014)Google Scholar
  20. 20.
    Kasabov, N.: Neucube evospike architecture for spatio-temporal modelling and pattern recognition of brain signals. In: Artificial Neural Networks in Pattern Recognition, pp. 225–243. Springer (2012)Google Scholar
  21. 21.
    Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G.: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)CrossRefGoogle Scholar
  22. 22.
    Maass, W., Bishop, C.M.: Pulsed Neural Networks. MIT press, Cambridge (2001)Google Scholar
  23. 23.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Schrauwen, B., Van Campenhout, J.: Bsa, a fast and accurate spike train encoding scheme. In: Proceedings of the international joint conference on neural networks. vol. 4, pp. 2825–2830. IEEE Piscataway, NJ (2003)Google Scholar
  25. 25.
    Starplus dataset. Accessed 10 Aug 2015
  26. 26.
    Vazquez, A.L., Noll, D.C.: Nonlinear aspects of the bold response in functional mri. Neuroimage 7(2), 108–118 (1998)CrossRefGoogle Scholar
  27. 27.
    Yiqing, L., Xigang, Y., Yongjian, L.: An improved pso algorithm for solving non-convex nlp/minlp problems with equality constraints. Comput. Chem. Eng. 31(3), 153–162 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Neelava Sengupta
    • 1
  • Nathan Scott
    • 1
  • Nikola Kasabov
    • 1
  1. 1.Knowledge Engineering and Discovery Research InstituteAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations