Advertisement

What Mechanisms Induce Methylation of FMR1 Gene Full Mutation? A Still Unanswered Question

  • Elisabetta Tabolacci
  • Giovanni NeriEmail author
Chapter
Part of the Epigenetics and Human Health book series (EHH)

Abstract

The fragile X syndrome (FXS) is the most frequent form of inherited intellectual disability and autism, for which there is currently no cure. In the vast majority of FXS patients, the FMR1 gene is inactivated by epigenetic changes secondary to expansion of a CGG repeat. FMR1 encodes the fragile X mental retardation protein (FMRP) involved in multiple aspects of mRNA metabolism in the brain. Many mRNAs that are dysregulated in the absence of FMRP encode synaptic proteins, causing a characteristically abnormal morphogenesis of dendritic spines. Methylation of FMR1 full mutation is estimated to occur around 10–12 weeks of gestation, resulting in block of transcription. The molecular mechanisms involved in this particular type of methylation are still unknown. Amidst fragile X families, there are rare males who, in spite of having inherited a full mutation (usually of small dimensions between 200 and 300 CGG repeats), are unable to methylate it. These individuals produce enough FMRP protein to allow an intellectual development within normal range. What factors are responsible for the rescue of these individuals from being affected with the fragile X syndrome? In an effort to answer this crucial question, which may have consequences for a cure, several potential regulatory factors have been studied so far. The identification of molecular and cellular pathways underlying the pathogenesis of FXS that may be targetable by drugs with potential therapeutic value remains the ultimate goal. Here we produce a critical revision of the present knowledge about the syndrome and its epigenetic pathogenesis.

Keywords

Fragile X syndrome FMR1 gene DNA methylation Epigenetic modifications FMRP 

References

  1. Allingham-Hawkins DJ, Babul-Hirji R, Chitayat D et al (1999) Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study-preliminary data. Am J Med Genet 83:322–325PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172:803–808PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ascano M Jr, Mukherjee N, Bandaru P et al (2012) FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492:382–386PubMedPubMedCentralCrossRefGoogle Scholar
  4. Auerbach BD, Osterweil EK, Bear MF (2011) Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480:63–68PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bagni C, Oostra BA (2013) Fragile X syndrome: from protein function to therapy. Am J Med Genet A 161A:2809–2821PubMedCrossRefGoogle Scholar
  6. Bakker CE, Verheij C, Willemsen R et al (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78:23–33Google Scholar
  7. Bardoni B, Castets M, Huot ME et al (2003) 82-FIP, a novel FMRP (fragile X mental retardation protein) interacting protein, shows a cell cycle-dependent intracellular localization. Hum Mol Genet 12:1689–1698PubMedCrossRefGoogle Scholar
  8. Bar-Nur O, Caspi I, Benvenisty N (2012) Molecular analysis of FMR1 reactivation in fragile-X induced pluripotent stem cells and their neuronal derivatives. J Mol Cell Biol 4:180–183PubMedCrossRefGoogle Scholar
  9. Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377PubMedCrossRefGoogle Scholar
  10. Bechara E, Davidovic L, Melko M et al (2007) Fragile X related protein 1 isoforms differentially modulate the affinity of fragile X mental retardation protein for G-quartet RNA structure. Nucleic Acids Res 35:299–306PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bechara EG, Didiot MC, Melko M et al (2009) A novel function for fragile X mental retardation protein in translational activation. PLoS Biol 7, e16PubMedCrossRefGoogle Scholar
  12. Beilina A, Tassone F, Schwartz PH et al (2004) Redistribution of transcription start sites within the FMR1 promoter region with expansion of the downstream CGG-repeat element. Hum Mol Genet 13:543–549PubMedCrossRefGoogle Scholar
  13. Bennetto L, Pennington BF, Porter D et al (2001) Profile of cognitive functioning in women with the fragile X mutation. Neuropsychology 15:290–299PubMedCrossRefGoogle Scholar
  14. Berger SL, Kouzarides T, Shiekhattar R et al (2009) An operational definition of epigenetics. Genes Dev 23:781–783PubMedPubMedCentralCrossRefGoogle Scholar
  15. Berry-Kravis E, Hessl D, Coffey S et al (2009) A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J Med Genet 46:266–271PubMedPubMedCentralCrossRefGoogle Scholar
  16. Berry-Kravis EM, Hessl D, Rathmell B et al (2012) Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci Transl Med 4:152ra127PubMedCrossRefGoogle Scholar
  17. Bettler B, Tiao JY (2006) Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 110:533–543PubMedCrossRefGoogle Scholar
  18. Bhogal B, Jepson JE, Savva YA et al (2011) Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat Neurosci 14:1517–1524PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bilousova TV, Dansie L, Ngo M et al (2009) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46:94–102PubMedCrossRefGoogle Scholar
  20. Blackwell E, Zhang X, Ceman S (2010) Arginines of the RGG box regulate FMRP association with polyribosomes and mRNA. Hum Mol Genet 19:1314–13123PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brackett DM, Qing F, Amieux PS et al (2013) FMR1 transcript isoforms: association with polyribosomes; regional and developmental expression in mouse brain. PLoS One 8, e58296PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brown V, Jin P, Ceman S et al (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–487PubMedCrossRefGoogle Scholar
  23. Cameron EE, Bachman KE, Myöhänen S et al (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107PubMedCrossRefGoogle Scholar
  24. Caudy AA, Myers M, Hannon GJ et al (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491–2496PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ceman S, O’Donnell WT, Reed M et al (2003) Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum Mol Genet 12:3295–3305PubMedCrossRefGoogle Scholar
  26. Chang S, Bray SM, Li Z et al (2008) Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol 4:256–263PubMedCrossRefGoogle Scholar
  27. Cheever A, Ceman S (2009) Translation regulation of mRNAs by the fragile X family of proteins through the microRNA pathway. RNA Biol 6:175–178PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen L, Yun SW, Seto J et al (2003) The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U rich target sequences. Neuroscience 120:1005–1017PubMedCrossRefGoogle Scholar
  29. Chiurazzi P, Pomponi MG, Willemsen R et al (1998) In vitro reactivation of the FMR1 gene involved in fragile X syndrome. Hum Mol Genet 7:109–113PubMedCrossRefGoogle Scholar
  30. Chiurazzi P, Pomponi MG, Pietrobono R et al (1999) Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum Mol Genet 8:2317–2323PubMedCrossRefGoogle Scholar
  31. Clifford S, Dissanayake C, Bui QM et al (2007) Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J Autism Dev Disord 37:738–747PubMedCrossRefGoogle Scholar
  32. Coffee B, Zhang F, Warren ST et al (1999) Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat Genet 22:98–101PubMedCrossRefGoogle Scholar
  33. Colak D, Zaninovic N, Cohen MS et al (2014) Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science 343:1002–1005PubMedPubMedCentralCrossRefGoogle Scholar
  34. Collins SC, Bray SM, Suhl JA et al (2010) Identification of novel FMR1 variants by massively parallel sequencing in developmentally delayed males. Am J Med Genet A 152A:2512–2520PubMedPubMedCentralCrossRefGoogle Scholar
  35. Crawford DC, Acuña JM, Sherman SL (2001) FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med 3:359–371PubMedPubMedCentralCrossRefGoogle Scholar
  36. D’Hulst C, Kooy RF (2007) The GABAA receptor: a novel target for treatment of fragile X? Trends Neurosci 30:425–431PubMedCrossRefGoogle Scholar
  37. D’Hulst C, De Geest N, Reeve SP et al (2006) Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res 1121:238–245PubMedCrossRefGoogle Scholar
  38. D’Hulst C, Heulens I, Brouwer JR et al (2009) Expression of the GABAergic system in animal models for fragile X syndrome and fragile X associated tremor/ataxia syndrome (FXTAS). Brain Res 1253:176–183PubMedCrossRefGoogle Scholar
  39. Darnell JC, Fraser CE, Mostovetsky O et al (2005) Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev 19:903–918PubMedPubMedCentralCrossRefGoogle Scholar
  40. Darnell JC, Van Driesche SJ, Zhang C et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146:247–261PubMedPubMedCentralCrossRefGoogle Scholar
  41. Davidovic L, Bechara E, Gravel M et al (2006) The nuclear microspherule protein 58 is a novel RNA-binding protein that interacts with fragile X mental retardation protein in polyribosomal mRNPs from neurons. Hum Mol Genet 15:1525–1538PubMedCrossRefGoogle Scholar
  42. De Boulle K, Verkerk AJ, Reyniers E et al (1993) A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nat Genet 3:31–35PubMedCrossRefGoogle Scholar
  43. de Esch CE, Ghazvini M, Loos F et al (2014) Epigenetic characterization of the FMR1 promoter in induced pluripotent stem cells from human fibroblasts carrying an unmethylated full mutation. Stem Cell Rep 3:548–555CrossRefGoogle Scholar
  44. Di Ruscio A, Ebralidze AK, Benoukraf T et al (2013) DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503:371–376PubMedPubMedCentralCrossRefGoogle Scholar
  45. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dölen G, Osterweil E, Rao BS et al (2007) Correction of fragile X syndrome in mice. Neuron 56:955–962PubMedPubMedCentralCrossRefGoogle Scholar
  47. Edbauer D, Neilson JR, Foster KA et al (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384PubMedCrossRefGoogle Scholar
  48. Eichler EE, Richards S, Gibbs RA et al (1993) Fine structure of the human FMR1 gene. Hum Mol Genet 2:1147–1153PubMedCrossRefGoogle Scholar
  49. Eichler EE, Holden JJA, Popovich BW et al (1994) Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet 8:88–94PubMedCrossRefGoogle Scholar
  50. Eiges R, Urbach A, Malcov M et al (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1:568–577PubMedCrossRefGoogle Scholar
  51. El Idrissi A, Neuwirth LS, L’Amoreaux W (2010) Taurine regulation of short term synaptic plasticity in fragile X mice. J Biomed Sci 17(Suppl 1):S15PubMedPubMedCentralCrossRefGoogle Scholar
  52. Engels B, van’t Padje S, Blonden L et al (2004) Characterization of Fxr1 in Danio rerio; a simple vertebrate model to study costamere development. J Exp Biol 207:3329–3338PubMedCrossRefGoogle Scholar
  53. Feng Y, Zhang F, Lokey LK et al (1995) Translational suppression by trinucleotide repeat expansion at FMR1. Science 268:731–734PubMedCrossRefGoogle Scholar
  54. Fernandez-Carvajal I, Posadas BL, Pan R et al (2009) Expansion of an FMR1 grey-zone allele to a full mutation in two generations. J Mol Diagn 11:306–310PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gantois I, Vandesompele J, Speleman F et al (2006) Expression profiling suggests underexpression of the GABA(A) receptor subunit delta in the fragile X knockout mouse model. Neurobiol Dis 21:346–357PubMedCrossRefGoogle Scholar
  56. Ghoshal K, Datta J, Majumder S et al (2005) 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 25:4727–4741PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gladding CM, Collett VJ, Jia Z et al (2009) Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD. Mol Cell Neurosci 40:267–279PubMedCrossRefGoogle Scholar
  58. Gleicher N, Weghofer A, Oktay K et al (2009) Relevance of triple CGG repeats in the FMR1 gene to ovarian reserve. Reprod Biomed Online 19:385–390PubMedCrossRefGoogle Scholar
  59. Gnyszka A, Jastrzebski Z, Flis S (2013) DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res 33:2989–2996PubMedGoogle Scholar
  60. Greco CM, Hagerman RJ, Tassone F et al (2002) Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 125:1760–1771PubMedCrossRefGoogle Scholar
  61. Greco CM, Berman RF, Martin RM et al (2006) Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 129:243–255PubMedCrossRefGoogle Scholar
  62. Gross C, Nakamoto M, Yao X et al (2010) Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J Neurosci 30:10624–10638PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gruss M, Braun K (2004) Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice. Neurochem Int 45:81–88PubMedCrossRefGoogle Scholar
  64. Hagerman PJ, Hagerman RJ (2004) Fragile X-associated tremor/ataxia syndrome (FXTAS). Ment Retard Dev Disabil Res Rev 10:25–30PubMedCrossRefGoogle Scholar
  65. Hagerman PJ, Hagerman RJ (2007) Fragile X-associated tremor/ataxia syndrome-an older face of the fragile X gene. Nat Clin Pract Neurol 3:107–112PubMedCrossRefGoogle Scholar
  66. Hagerman RJ, Leehey M, Heinrichs W et al (2001) Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57:127–130PubMedCrossRefGoogle Scholar
  67. Handa V, Saha T, Usdin K (2003) The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer. Nucleic Acids Res 31:6243–6248PubMedPubMedCentralCrossRefGoogle Scholar
  68. Henderson C, Wijetunge L, Kinoshita MN et al (2012) Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci Transl Med 4:152ra128PubMedCrossRefGoogle Scholar
  69. Heulens I, D’Hulst C, Van Dam D et al (2012) Pharmacological treatment of fragile X syndrome with GABAergic drugs in a knockout mouse model. Behav Brain Res 229:244–249PubMedCrossRefGoogle Scholar
  70. Huber KM, Gallagher SM, Warren ST et al (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99:7746–7750PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hunter J, Rivero-Arias O, Angelov A et al (2014) Epidemiology of fragile X syndrome: a systematic review and meta-analysis. Am J Med Genet A 164A:1648–1658PubMedCrossRefGoogle Scholar
  72. Irwin SA, Swain RA, Christmon CA et al (2000) Evidence for altered Fragile-X mental retardation protein expression in response to behavioral stimulation. Neurobiol Learn Mem 74:87–93PubMedCrossRefGoogle Scholar
  73. Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16:2497–2508PubMedPubMedCentralCrossRefGoogle Scholar
  74. Jackson-Grusby L, Laird PW, Magge SN et al (1997) Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc Natl Acad Sci U S A 94:4681–4685PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jacquemont S, Curie A, des Portes V et al (2011) Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med 3:64ra1PubMedCrossRefGoogle Scholar
  76. Jin P, Zarnescu DC, Ceman S et al (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7:113–117PubMedCrossRefGoogle Scholar
  77. Kalkunte R, Macarthur D, Morton R (2007) Glioblastoma in a boy with fragile X: an unusual case of neuroprotection. Arch Dis Child 92:795–796PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kao DI, Aldridge GM, Weiler IJ et al (2010) Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc Natl Acad Sci U S A 107:15601–15606PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kaufmann WE (2002) Neurobiology of Fragile X syndrome: from molecular genetics to neurobehavioral phenotype. Microsc Res Tech 57:131–134PubMedCrossRefGoogle Scholar
  80. Khalil AM, Faghihi MA, Modarresi F et al (2008) A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome. PLoS One 3, e1486PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kumari D, Usdin K (2010) The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome. Hum Mol Genet 19:4634–4642PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kumari D, Gabrielian A, Wheeler D et al (2005) The roles of Sp1, Sp3, USF1/USF2 and NRF-1 in the regulation and three-dimensional structure of the Fragile X mental retardation gene promoter. Biochem J 386:297–303PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ladd PD, Smith LE, Rabaia NA et al (2007) An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum Mol Genet 16:3174–3187PubMedCrossRefGoogle Scholar
  84. Lanni S, Goracci M, Borrelli L et al (2013) Role of CTCF protein in regulating FMR1 locus transcription. PLoS Genet 9, e1003601PubMedPubMedCentralCrossRefGoogle Scholar
  85. Leehey MA, Berry-Kravis E, Goetz CG et al (2008) FMR1 CGG repeat length predicts motor dysfunction in premutation carriers. Neurology 70:1397–1402PubMedPubMedCentralCrossRefGoogle Scholar
  86. Levenga J, Hayashi S, de Vrij FM et al (2011) AFQ056, a new mGluR5 antagonist for treatment of fragile X syndrome. Neurobiol Dis 42:311–317PubMedCrossRefGoogle Scholar
  87. Li Y, Kirschmann DA, Wallrath LL (2002) Does heterochromatin protein 1 always follow code? Proc Natl Acad Sci U S A 99(Suppl 4):16462–16469PubMedPubMedCentralCrossRefGoogle Scholar
  88. Li Y, Tang Y, Ye L et al (2003) Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol 129:43–51PubMedCrossRefGoogle Scholar
  89. Lim JH, Luo T, Sargent TD et al (2005) Developmental expression of Xenopus fragile X mental retardation-1 gene. Int J Dev Biol 49:981–984PubMedCrossRefGoogle Scholar
  90. Linder B, Plöttner O, Kroiss M et al (2008) Tdrd3 is a novel stress granule-associated protein interacting with the Fragile-X syndrome protein FMRP. Hum Mol Genet 17:3236–3246PubMedCrossRefGoogle Scholar
  91. Liu Y, Zhu X, Zhu J et al (2007) Identification of differential expression of genes in hepatocellular carcinoma by suppression subtractive hybridization combined cDNA microarray. Oncol Rep 18:943–951PubMedGoogle Scholar
  92. Loesch DZ, Huggins RM, Hagerman RJ (2004) Phenotypic variation and FMRP levels in fragile X. Ment Retard Dev Disabil Res Rev 10:31–41PubMedCrossRefGoogle Scholar
  93. Lozano R, Rosero CA, Hagerman RJ (2014a) Fragile X spectrum disorders. Intractable Rare Dis Res 3:134–146PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lozano R, Hare EB, Hagerman RJ (2014b) Modulation of the GABAergic pathway for the treatment of fragile X syndrome. Neuropsychiatr Dis Treat 10:1769–1779PubMedPubMedCentralGoogle Scholar
  95. Lubs HA (1969) A marker X chromosome. Am J Hum Genet 21:231–244PubMedPubMedCentralGoogle Scholar
  96. Lucá R, Averna M, Zalfa F et al (2013) The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation. EMBO Mol Med 5:1523–1536PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ludwig AL, Raske C, Tassone F et al (2009) Translation of the Fmr1 mRNA is not influenced by AGG interruptions. Nucleic Acid Res 37:6896–6904PubMedPubMedCentralCrossRefGoogle Scholar
  98. Martin JP, Bell J (1943) A pedigree of mental defect showing sex-linkage. J Neurol Phychiatry 6:154–157CrossRefGoogle Scholar
  99. Menon RP, Gibson TJ, Pastore A (2004) The C terminus of fragile X mental retardation protein interacts with the multi-domain Ran-binding protein in the microtubule-organising centre. J Mol Biol 343:43–53PubMedCrossRefGoogle Scholar
  100. Mientjes EJ, Nieuwenhuizen I, Kirkpatrick L et al (2006) The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol Dis 21:549–555PubMedCrossRefGoogle Scholar
  101. Miyashiro KY, Beckel-Mitchener A, Purk TP et al (2003) RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 37:417–431PubMedCrossRefGoogle Scholar
  102. Muddashetty R, Bassell GJ (2009) A boost in microRNAs shapes up the neuron. EMBO J 28:617–618PubMedPubMedCentralCrossRefGoogle Scholar
  103. Muddashetty RS, Kelić S, Gross C et al (2007) Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J Neurosci 27:5338–5348PubMedCrossRefGoogle Scholar
  104. Muddashetty RS, Nalavadi VC, Gross C et al (2011) Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell 42:673–688PubMedPubMedCentralCrossRefGoogle Scholar
  105. Musco G, Kharrat A, Stier G et al (1997) The solution structure of the first KH domain of FMR1, the protein responsible for the fragile X syndrome. Nat Struct Biol 4:712–716PubMedCrossRefGoogle Scholar
  106. Musumeci SA, Colognola RM, Ferri R et al (1988) Fragile-X syndrome: a particular epileptogenic EEG pattern. Epilepsia 29:41–47PubMedCrossRefGoogle Scholar
  107. Napoli I, Mercaldo V, Boyl PP et al (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134:1042–1054PubMedCrossRefGoogle Scholar
  108. Narayanan U, Nalavadi V, Nakamoto M et al (2007) FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. J Neurosci 27:14349–14357PubMedCrossRefGoogle Scholar
  109. Naumann A, Hochstein N, Weber S et al (2009) A distinct DNA-methylation boundary in the 5′-upstream sequence of the FMR1 promoter binds nuclear proteins and is lost in fragile X syndrome. Am J Hum Genet 85:606–616PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nishioka K, Chuikov S, Sarma K et al (2002) Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 16:479–489PubMedPubMedCentralCrossRefGoogle Scholar
  111. Nowicki ST, Tassone F, Ono MY et al (2007) The Prader-Willi phenotype of fragile X syndrome. J Dev Behav Pediatr 28:133–138PubMedCrossRefGoogle Scholar
  112. Olmos-Serrano JL, Corbin JG (2011) Amygdala regulation of fear and emotionality in fragile X syndrome. Dev Neurosci 33:365–378PubMedPubMedCentralCrossRefGoogle Scholar
  113. Olmos-Serrano JL, Paluszkiewicz SM, Martin BS et al (2010) Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome. J Neurosci 30:9929–9938PubMedPubMedCentralCrossRefGoogle Scholar
  114. Oostra BA, Chiurazzi P (2001) The fragile X gene and its function. Clin Genet 60:399–408PubMedCrossRefGoogle Scholar
  115. Opitz JM, Westphal JM, Daniel A (1984) Discovery of a connective tissue dysplasia in the Martin-Bell syndrome. Am J Med Genet 17:101–109PubMedCrossRefGoogle Scholar
  116. Osterweil EK, Chuang SC, Chubykin AA et al (2013) Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron 77:243–250PubMedPubMedCentralCrossRefGoogle Scholar
  117. Pacey LK, Heximer SP, Hampson DR (2009) Increased GABA(B) receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures. Mol Pharmacol 76:18–24PubMedCrossRefGoogle Scholar
  118. Pandey RR, Mondal T, Mohammad F et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–346PubMedCrossRefGoogle Scholar
  119. Paribello C, Tao L, Folino A et al (2010) Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol 10:91PubMedPubMedCentralCrossRefGoogle Scholar
  120. Pasciuto E, Bagni C (2014) SnapShot: FMRP mRNA targets and diseases. Cell 158:1446–1446.e1PubMedCrossRefGoogle Scholar
  121. Pastori C, Peschansky VJ, Barbouth D et al (2014) Comprehensive analysis of the transcriptional landscape of the human FMR1 gene reveals two new long noncoding RNAs differentially expressed in Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome. Hum Genet 133:59–67PubMedPubMedCentralCrossRefGoogle Scholar
  122. Patel K, Dickson J, Din S et al (2010) Targeting of 5-aza-2′-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme. Nucleic Acids Res 38:4313–4324PubMedPubMedCentralCrossRefGoogle Scholar
  123. Piazzon N, Rage F, Schlotter F et al (2008) In vitro and in cellulo evidences for association of the survival of motor neuron complex with the fragile X mental retardation protein. J Biol Chem 283:5598–5610PubMedCrossRefGoogle Scholar
  124. Pietrobono R, Pomponi MG, Tabolacci E et al (2002) Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res 30:3278–3285PubMedPubMedCentralCrossRefGoogle Scholar
  125. Pietrobono R, Tabolacci E, Zalfa F et al (2005) Molecular dissection of the events leading to inactivation of the FMR1 gene. Hum Mol Genet 14:267–277PubMedCrossRefGoogle Scholar
  126. Pirozzi F, Tabolacci E, Neri G (2011) The FRAXopathies: definition, overview, and update. Am J Med Genet A 155A:1803–1816PubMedCrossRefGoogle Scholar
  127. Pyeritz RE, Stamberg J, Thomas GH et al (1982) The marker Xq28 syndrome (“fragile-X Syndrome”) in a retarded man with mitral valve prolapse. Johns Hopkins Med J 151:231–237PubMedGoogle Scholar
  128. Ramos A, Hollingworth D, Adinolfi S et al (2006) The structure of the N-terminal domain of the fragile X mental retardation protein: a platform for protein-protein interaction. Structure 14:21–31PubMedCrossRefGoogle Scholar
  129. Richards BW, Sylvester PE, Brooker C (1981) Fragile X-linked mental retardation: the Martin-Bell syndrome. J Ment Defic Res 25:253–256PubMedGoogle Scholar
  130. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323PubMedPubMedCentralCrossRefGoogle Scholar
  131. Rousseau F, Rouillard P, Morel ML et al (1995) Prevalence of carriers of premutation-size alleles of the FMR1 gene–and implications for the population genetics of the fragile X syndrome. Am J Hum Genet 57:1006–1018PubMedPubMedCentralGoogle Scholar
  132. Santoro MR, Bray SM, Warren ST (2012) Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol 7:219–245PubMedCrossRefGoogle Scholar
  133. Schenck A, Bardoni B, Moro A et al (2001) A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc Natl Acad Sci USA 98:8844–8849PubMedPubMedCentralCrossRefGoogle Scholar
  134. Schenck A, Bardoni B, Langmann C et al (2003) CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38:887–898PubMedCrossRefGoogle Scholar
  135. Schultz-Pedersen S, Hasle H, Olsen JH et al (2001) Evidence of decreased risk of cancer in individuals with fragile X. Am J Med Genet 103:226–230PubMedCrossRefGoogle Scholar
  136. Sharma A, Hoeffer CA, Takayasu Y et al (2010) Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci 30:694–702PubMedPubMedCentralCrossRefGoogle Scholar
  137. Sheridan SD, Theriault KM, Reis SA et al (2011) Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 6, e26203PubMedPubMedCentralCrossRefGoogle Scholar
  138. Sherman SL, Jacobs PA, Morton NE et al (1985) Further segregation analysis of the fragile X syndrome with special reference to transmitting males. Hum Genet 69:289–299PubMedCrossRefGoogle Scholar
  139. Smeets HJ, Smits AP, Verheij CE et al (1995) Normal phenotype in two brothers with a full FMR1 mutation. Hum Mol Genet 4:2103–2108PubMedCrossRefGoogle Scholar
  140. Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856PubMedCrossRefGoogle Scholar
  141. Sullivan AK, Crawford DC, Scott EH et al (2002) Paternally transmitted FMR1 alleles are less stable than maternally transmitted alleles in the common and intermediate size range. Am J Hum Genet 70:1532–1544PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sullivan K, Hatton D, Hammer J et al (2006) ADHD symptoms in children with FXS. Am J Med Genet A 140:2275–2288PubMedCrossRefGoogle Scholar
  143. Suzuki H, Gabrielson E, Chen W et al (2002) A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31:141–149PubMedCrossRefGoogle Scholar
  144. Tabolacci E, Chiurazzi P (2013) Epigenetics, fragile X syndrome and transcriptional therapy. Am J Med Genet A 161A:2797–2808PubMedCrossRefGoogle Scholar
  145. Tabolacci E, Pietrobono R, Moscato U et al (2005) Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments. Eur J Hum Genet 13:641–648PubMedCrossRefGoogle Scholar
  146. Tabolacci E, Moscato U, Zalfa F et al (2008a) Epigenetic analysis reveals a euchromatic configuration in the FMR1 unmethylated full mutations. Eur J Hum Genet 16:1487–1498PubMedCrossRefGoogle Scholar
  147. Tabolacci E, De Pascalis I, Accadia M et al (2008b) Modest reactivation of the mutant FMR1 gene by valproic acid is accompanied by histone modifications but not DNA demethylation. Pharmacogenet Genomics 18:738–741PubMedCrossRefGoogle Scholar
  148. Tabolacci E, Pirozzi F, Gomez-Mancilla B et al (2012) The mGluR5 antagonist AFQ056 does not affect methylation and transcription of the mutant FMR1 gene in vitro. BMC Med Genet 13:13PubMedPubMedCentralCrossRefGoogle Scholar
  149. Tamanini F, Van Unen L, Bakker C et al (1999) Oligomerization properties of fragile-X mental-retardation protein (FMRP) and the fragile-X-related proteins FXR1P and FXR2P. Biochem J 3:517–523CrossRefGoogle Scholar
  150. Todd PK, Oh SY, Krans A et al (2010) Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome. PLoS Genet 6, e1001240PubMedPubMedCentralCrossRefGoogle Scholar
  151. Torrioli MG, Vernacotola S, Peruzzi L et al (2008) A double-blind, parallel, multicenter comparison of L-acetylcarnitine with placebo on the attention deficit hyperactivity disorder in fragile X syndrome boys. Am J Med Genet A 146A:803–812PubMedCrossRefGoogle Scholar
  152. Torrioli M, Vernacotola S, Setini C et al (2010) Treatment with valproic acid ameliorates ADHD symptoms in fragile X syndrome boys. Am J Med Genet A 152A:1420–1427PubMedGoogle Scholar
  153. Tucker B, Richards RI, Lardelli M (2006) Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. Hum Mol Genet 15:3446–3458PubMedCrossRefGoogle Scholar
  154. Urbach A, Bar-Nur O, Daley GQ et al (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6:407–411PubMedPubMedCentralCrossRefGoogle Scholar
  155. Verheij C, de Graaff E, Bakker CE et al (1995) Characterization of FMR1 proteins isolated from different tissues. Hum Mol Genet 4:895–901PubMedCrossRefGoogle Scholar
  156. Verkerk AJ, Pieretti M, Sutcliffe JS et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914PubMedCrossRefGoogle Scholar
  157. Verkerk AJ, de Graaff E, De Boulle K et al (1993) Alternative splicing in the fragile X gene FMR1. Hum Mol Genet 2:1348PubMedCrossRefGoogle Scholar
  158. Wan L, Dockendorff TC, Jongens TA et al (2000) Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol Cell Biol 20:8536–8547PubMedPubMedCentralCrossRefGoogle Scholar
  159. Wang Z, Taylor AK, Bridge JA (1996) FMR1 fully expanded mutation with minimal methylation in a high functioning fragile X male. J Med Genet 33:376–378PubMedPubMedCentralCrossRefGoogle Scholar
  160. Wang H, Wu LJ, Kim SS et al (2008) FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59:634–647PubMedCrossRefGoogle Scholar
  161. Wang L, Bruce G, Spary E et al (2010) GABA(B) mediated regulation of sympathetic preganglionic neurons: pre- and postsynaptic sites of action. Front Neurol 1:142PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wang X, Song X, Glass CK et al (2011) The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol 3:a003756PubMedPubMedCentralGoogle Scholar
  163. Willemsen R, Bontekoe CJ, Severijnen LA et al (2002) Timing of the absence of FMR1 expression in full mutation chorionic villi. Hum Genet 110:601–605PubMedCrossRefGoogle Scholar
  164. Willemsen R, Levenga J, Oostra BA (2011) CGG repeat in the FMR1 gene: size matters. Clin Genet 80:214–225PubMedPubMedCentralCrossRefGoogle Scholar
  165. Xie W, Dolzhanskaya N, LaFauci G et al (2009) Tissue and developmental regulation of fragile X mental retardation 1 exon 12 and 15 isoforms. Neurobiol Dis 35:52–54PubMedCrossRefGoogle Scholar
  166. Yang Q, Yang L, Zhang K et al (2015) Increased coupling of caveolin-1 and estrogen receptor α contributes to the fragile X syndrome. Ann Neurol 77:618–636PubMedCrossRefGoogle Scholar
  167. Yrigollen CM, Durbin-Johnson B, Gane L et al (2012) AGG interruptions within the maternal FMR1 gene reduce the risk of offspring with fragile X syndrome. Genet Med 14:729–736PubMedPubMedCentralCrossRefGoogle Scholar
  168. Zalfa F, Adinolfi S, Napoli I et al (2005) Fragile X mental retardation protein (FMRP) binds specifically to the brain cytoplasmic RNAs BC1/BC200 via a novel RNA-binding motif. J Biol Chem 280:33403–33410PubMedCrossRefGoogle Scholar
  169. Zalfa F, Eleuteri B, Dickson KS et al (2007) A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat Neurosci 10:578–587PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zang JB, Nosyreva ED, Spencer CM et al (2009) A mouse model of the human Fragile X syndrome I304N mutation. PLoS Genet 5, e1000758PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhang M, Wang Q, Huang Y (2007) Fragile X mental retardation protein FMRP and the RNA export factor NXF2 associate with and destabilize Nxf1 mRNA in neuronal cells. Proc Natl Acad Sci U S A 104:10057–10062PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Genomic Medicine, School of MedicineCatholic UniversityRomeItaly

Personalised recommendations