Modified Nucleic Acids pp 83-100

Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 31) | Cite as

Synthetic Wavelength-Shifting Fluorescent Probes of Nucleic Acids

  • Christian Schwechheimer
  • Marcus Merkel
  • Peggy R. Bohländer
  • Hans-Achim Wagenknecht
Chapter

Abstract

Visualizing of nucleic acids represents not only an important task for molecular imaging but also for chemical biology in general. Fluorescent labels can be incorporated either synthetically into nucleic acids by their corresponding building blocks (both phosphoramidites and nucleoside triphosphates) or postsynthetically by one of the recent sophisticating “click”-type reacting building blocks. Herein, we focus on the development of new photostable cyanine-styryl dyes and on wavelength-shifting fluorescent probes as promising tools for molecular imaging. The double helical architecture around two fluorophores is crucial for efficient photophysical interactions that range from excitonic and excimer-type to energy transfer interactions. This is equally important for fluorescent labels as isosteric and non-isosteric DNA base replacements. Especially, the latter ones yield fluorescent DNA and RNA systems with dual emission color readout as wavelength-shifting probes. Our DNA and RNA “traffic light” combines the green emission of TO with the red emission of TR. The concept can be transferred to a DNA system that is synthetically easier to access since the dyes were attached postsynthetically as 2′-modifications. Using newly synthesized dyes of the cyanine-styryl type, new nucleic acid probes were realized with high quantum yields and excellent photostability. Combined as energy transfer pairs not only wavelength-shifting DNA probes with red-green-transfer emission color change but also yellow-blue pairs were realized. All of them show good emission color contrasts due to very efficient energy transfer. These wavelength-shifting probes have a significant potential to be applied on the RNA level for molecular imaging of living cells.

References

  1. 1.
    Chang PV, Bertozzi CR (2012) Imaging beyond the proteome. Chem Commun 48:8864–8879CrossRefGoogle Scholar
  2. 2.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Schwartz JL, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645CrossRefPubMedGoogle Scholar
  3. 3.
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shimomura O (2009) Discovery of green fluorescent protein (GFP) (Nobel lecture). Angew Chem Int Ed 48:5590–5602CrossRefGoogle Scholar
  5. 5.
    Chalfie M (2009) GFP: lighting up life (Nobel lecture). Angew Chem Int Ed 48:5603–5611CrossRefGoogle Scholar
  6. 6.
    Tsien RY (2009) Constructing and exploiting the fluorescent protein paintbox (Nobel lecture). Angew Chem Int Ed 48:5612–5626CrossRefGoogle Scholar
  7. 7.
    Schmucker W, Wagenknecht H-A (2012) Organic chemistry of DNA functionalization; chromophores as DNA base substitutes versus DNA base/2′-modifications. Synlett 23:2435–2448CrossRefGoogle Scholar
  8. 8.
    Sinkeldam RW, Greco NJ, Tor Y (2010) Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 110:2579–2619CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weisbrod SH, Marx A (2008) Novel strategies for the site-specific labelling of nucleic acids. Chem Commun 44:5675–5685CrossRefGoogle Scholar
  10. 10.
    El-Sagheer AH, Brown T (2010) Click chemistry with DNA. Chem Soc Rev 39:1388–1405CrossRefPubMedGoogle Scholar
  11. 11.
    Gramlich PM, Wirges CT, Manetto A, Carell T (2008) Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction. Angew Chem Int Ed 47:8350–8358CrossRefGoogle Scholar
  12. 12.
    Merkel M, Peewasan K, Arndt S, Ploschik D, Wagenknecht H-A (2015) Copper-free postsynthetic labeling of nucleic acids by means of bioorthogonal reactions. ChemBioChem 16:1541–1553Google Scholar
  13. 13.
    Hocek M, Fojta M (2011) Nucleobase modification as redox DNA labelling for electrochemical detection. Chem Soc Rev 40:5802–5814CrossRefPubMedGoogle Scholar
  14. 14.
    Hocek M (2014) Synthesis of base-modified 2′-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J Am Chem Soc 79:9914–9921Google Scholar
  15. 15.
    Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18–30CrossRefPubMedGoogle Scholar
  16. 16.
    Huber R, Amann N, Wagenknecht H-A (2004) Synthesis of DNA with phenanthridinium as an artificial DNA base. J Org Chem 69:744–751CrossRefPubMedGoogle Scholar
  17. 17.
    Valis L, Wagenknecht H-A (2007) Phenanthridinium as an artificial DNA base: comparison of two alternative acylic 2′-deoxyribose substitutes. Synlett 13:2111–2115Google Scholar
  18. 18.
    O’Neill MA, Barton JK (2002) 2-aminopurine: a probe of structural dynamics and charge transfer in DNA and DNA:RNA hybrids. J Am Chem Soc 124:13053–13066CrossRefPubMedGoogle Scholar
  19. 19.
    Dallmann A, Dehnel L, Peters T, Mügge C, Griesinger C, Tuma J, Ernsting NP (2010) 2-aminopurine incorporation perturbs the dynamics and structure of DNA. Angew Chem Int Ed 49:5989–5992CrossRefGoogle Scholar
  20. 20.
    Holzhauser C, Berndl S, Menacher F, Breunig M, Göpferich A, Wagenknechr H-A (2010) Synthesis and optical properties of cyanine dyes as fluorescent DNA base substitutions for live cell imaging. The journal Eur J Org Chem 1239–1248Google Scholar
  21. 21.
    Vazquez ME, Rothman DM, Imperiali B (2004) A new environment-sensitive fluorescent amino acid for Fmoc-based solid phase peptide synthesis. Org Biomol Chem 2:1965–1966CrossRefGoogle Scholar
  22. 22.
    Sharma V, Lawrence DS (2009) Über-responsive peptide-based sensors of signaling proteins. Angew Chem Int Ed 48:7290–7293CrossRefGoogle Scholar
  23. 23.
    Fiebig T (2009) Exciting DNA. J Phys Chem B 113:9348–9349CrossRefPubMedGoogle Scholar
  24. 24.
    Soujanya T, Krishna TSR, Samanta A (1992) The nature of 4-aminophthalimide-cyclodextrin inclusion complexes. J Phys Chem 96:8544–8548CrossRefGoogle Scholar
  25. 25.
    Wenge U, Wagenknecht H-A (2011) Synthetic GFP chromophore and control of excited-state proton transfer in DNA. Synthesis 3:502–508Google Scholar
  26. 26.
    Kashida H, Asanuma H, Komiyama M (2006) Insertion of two pyrene moieties into oligodeoxyribonucleotides for the efficient detection of deletion polymorphisms. The journal Chem. Commun. 2768–2770Google Scholar
  27. 27.
    Trkulja I, Haener R (2007) Monomeric and heterodimeric triple helical DNA mimics. J Am Chem Soc 129(25):7982–7989CrossRefPubMedGoogle Scholar
  28. 28.
    Malinovskii VL, Samain F, Haener R (2007) Helical arrangement of interstrand stacked pyrenes in a DNA framework. Angew Chem Int Ed 46(24):4464–4467CrossRefGoogle Scholar
  29. 29.
    Balakin KV, Korshun VA, Mikhalev II, Maleev GV, Malakhov AD, Prokhorenko IA, Berlin YA (1998) Conjugates of oligonucleotides with polyaromatic fluorophores as promising DNA probes. Biosens Bioelectron 13:771–778CrossRefPubMedGoogle Scholar
  30. 30.
    Yamana K, Iwai T, Ohtani Y, Sato S, Nakamura M, Nakano H (2002) Bis-pyrene-labeled oligonucleotides: sequence specificity of excimer and monomer fluorescence changes upon hybridization with DNA. Bioconjug Chem 13(6):1266–1273CrossRefPubMedGoogle Scholar
  31. 31.
    Yamana K, Fukunaga Y, Ohtani Y, Sato S, Nakamura M, Kim WJ, Akaike T, Maruyama A (2005) DNA mismatch detection using a pyrene-excimer-forming probe. The journal Chem. Commun. 2509–2511Google Scholar
  32. 32.
    Seio K, Mizuta M, Tasaki K, Tamaki K, Ohkubo A, Sekine M (2008) Hybridization-dependent fluorescence of oligodeoxynucleotides incorporating new pyrene-modified adenosine residues. Bioorg Med Chem 16(17):8287–8293CrossRefPubMedGoogle Scholar
  33. 33.
    Fujimoto K, Shimizu H, Inouye M (2004) Unambiguous detection of target-DNAs by excimer-monomer switching molecular beacons. J Org Chem 69:3271–3275CrossRefPubMedGoogle Scholar
  34. 34.
    Chen Y, Yang CJ, Wu Y, Conlon P, Kim Y, Lin H, Tan W (2008) Light-switching excimer beacon assays for ribonuclease H kinetic study. ChemBioChem 9(3):355–359CrossRefPubMedGoogle Scholar
  35. 35.
    Conlon P, Yang CJ, Wu Y, Chen Y, Martinez K, Kim Y, Stevens N, Marti AA, Jockusch S, Turro NJ, Tan W (2008) Pyrene excimer signaling molecular beacons for probing nucleic acids. J Am Chem Soc 130(1):336–342CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wagner C, Wagenknecht H-A (2006) Perylene-3,4:9,10-tetracarboxylic acid bisimide dye as an artificial DNA base surrogate. Org Lett 8:4191–4194CrossRefPubMedGoogle Scholar
  37. 37.
    Baumstark D, Wagenknecht H-A (2008) Perylene bisimide dimers as fluorescent glue for DNA and for base mismatch detection. Angew Chem Int Ed 47:2652–2654CrossRefGoogle Scholar
  38. 38.
    Zeidan TA, Carmieli R, Kelley RF, Wilson TM, Lewis FD, Wasielewski MR (2008) Charge-transfer in DNA in hairpin conjugates with perylenediimide as a base-pair surrogate. J Am Chem Soc 130:13945–13955CrossRefPubMedGoogle Scholar
  39. 39.
    Mishra A, Behera RK, Mishra BK, Behera GB (2000) Cyanines during the 1990s. A Review. Chem Rev 100:1973–2011CrossRefPubMedGoogle Scholar
  40. 40.
    Hosoi K, Hirano A, Tani T (2001) Dynamics of photocreated positive holes in silver bromide microcrystals with adsorbed cyanine dyes. J Appl Phys 90:6197–6204CrossRefGoogle Scholar
  41. 41.
    Glazer AN, Rye HS (1992) Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature 359:859–861CrossRefPubMedGoogle Scholar
  42. 42.
    Lartia R, Asseline U (2006) New cyanine-oligonucleotide conjugates: relationships between chemical structures and properties. Chem Eur J 12:2270–2281CrossRefPubMedGoogle Scholar
  43. 43.
    Privat E, Asseline U (2001) Synthesis and binding properties of oligo-2′-deoxyribonucleotides covalently linked to a thiazole orange derivative. Bioconjug Chem 12:757–769CrossRefPubMedGoogle Scholar
  44. 44.
    Privat E, Melvin T, Asseline U, Vigny P (2001) Oligonucleotide-conjugated thiazole orange probes as “light-up” probes for messenger ribonucleic acid molecules in living cells. Photochem Photobiol 74:532–541CrossRefPubMedGoogle Scholar
  45. 45.
    Algar WR, Massey M, Krull UJ (2006) Fluorescence resonance energy transfer and complex formation between thiazole orange and various dye-DNA conjugates: implications in signaling nucleic acid hybridization. J Fluoresc 16:555–567CrossRefPubMedGoogle Scholar
  46. 46.
    Asseline U, Chassignol M, Aubert Y, Roig V (2006) Detection of terminal mismatches on DNA duplexes with fluorescent oligonucleotides. Org Biomol Chem 4:1949–1957CrossRefPubMedGoogle Scholar
  47. 47.
    Wang X, Krull UJ (2005) Synthesis and fluorescence studies of thiazole orange tethered onto oligonucleotide: development of a self-contained DNA biosensor on a fiber optic surface. Bioorg Med Chem Lett 15:1725–1729CrossRefPubMedGoogle Scholar
  48. 48.
    Hövelmann F, Bethge L, Seitz O, Single Labeled DNA (2012) FIT probes for avoiding false-positive signaling in the detection of DNA/RNA in qPCR or cell media. ChemBioChem 13:2072–2081CrossRefPubMedGoogle Scholar
  49. 49.
    Bethge L, Singh I, Seitz O (2010) Designed thiazole orange nucleotides for the synthesis of single labelled oligonucleotides that fluoresce upon matched hybridization. Org Biomol Chem 8:2439–2448CrossRefPubMedGoogle Scholar
  50. 50.
    Menacher F, Rubner M, Berndl S, Wagenknecht H-A (2008) Thiazole orange and Cy3: improvement of fluorescent DNA probes using short range electron transfer. J Org Chem 73:4263–4266CrossRefPubMedGoogle Scholar
  51. 51.
    Berndl S, Wagenknecht H-A (2009) Fluorescent color readout of DNA hybridization with thiazole orange as an artificial DNA base. Angew Chem Int Ed 48:2418–2421CrossRefGoogle Scholar
  52. 52.
    Berndl S, Breunig M, Gopferich A, Wagenknecht HA (2010) Imaging of RNA delivery to cells by thiazole orange as a fluorescent RNA base substitution. Org Biomol Chem 8(5):997–999CrossRefPubMedGoogle Scholar
  53. 53.
    Yoon TP, Ischay MA, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532CrossRefPubMedGoogle Scholar
  54. 54.
    Holzhauser C, Wagenknecht HA (2012) “DNA traffic lights”: concept of wavelength-shifting DNA probes and application in an aptasensor. ChemBioChem 13(8):1136–1138CrossRefPubMedGoogle Scholar
  55. 55.
    Barrois S, Wörner S, Wagenknecht H-A (2014) The role of duplex stability for wavelength-shifting fluorescent DNA probes: energy transfer vs. exciton interactions in DNA “traffic lights”. Photochem Photobiol Sci 13:1126–1129CrossRefPubMedGoogle Scholar
  56. 56.
    Berndl S, Herzig N, Kele P, Lachmann D, Li X, Wolfbeis OS, Wagenknecht H-A (2009) Comparison of a nucleosidic vs. a non-nucleosidic postsynthetic “click” modification of DNA with base-labile fluorescent probes. Bioconjug Chem 20:558–564CrossRefPubMedGoogle Scholar
  57. 57.
    Holzhauser C, Rubner MM, Wagenknecht H-A (2013) Energy transfer-based wavelength-shifting DNA probes with “clickable” cyanine dyes. Photochem Photobiol Sci 12:722–724CrossRefPubMedGoogle Scholar
  58. 58.
    Wilkinson F, Abdel-Shafi AA (1997) Mechanism of quenching of triplet states by oxygen: biphenyl derivatives in acetonitrile. J Phys Chem A 101:5509–5516CrossRefGoogle Scholar
  59. 59.
    Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC (2014) Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 43:1044–1056CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bohländer PR, Vilaivan T, Wagenknecht H-A (2015) Strand displacement and duplex invasion into double-stranded DNA by pyrrolidinyl peptide nucleic acids. Org Biomol Chem 13(35):9223–9230CrossRefPubMedGoogle Scholar
  61. 61.
    Holzhauser C, Wagenknecht H-A (2011) In-stem labeled molecular beacons for distinct fluorescent colort readout. Angew Chem Int Ed 50:7268–7272CrossRefGoogle Scholar
  62. 62.
    Huisgen R (1962) 1,3-Dipolar cycloaddition. Past and future. Angew Chem Int Ed 2:565–598CrossRefGoogle Scholar
  63. 63.
    Grotli M, Douglas M, Eritja R, Sproat BS (1998) 2′-O-propargyl oligoribonucleotides: synthesis and hybridisation. Tetrahedron 54:5899–5914CrossRefGoogle Scholar
  64. 64.
    Bohländer PR, Wagenknecht H-A (2014) Synthesis of a photostable energy-transfer pair for “DNA traffic lights”. The journal Eur. J. Org. Chem. 7547–7551Google Scholar
  65. 65.
    Kassab K (2002) Photophysical and photosensitizing properties of selected cyanines. J Photochem Photobiol B 68:15–22CrossRefPubMedGoogle Scholar
  66. 66.
    Davies MJ (2004) Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 3:17–25CrossRefPubMedGoogle Scholar
  67. 67.
    Armitage BA (2005) Cyanine dye-DNA interactions: intercalation, groove binding, and aggregation. Top Curr Chem 253:55–76Google Scholar
  68. 68.
    Toutchkine A, Nguyen D-V, Hahn KM (2007) Merocyanine dyes with improved photostability. Org Lett 9:2775–2777CrossRefPubMedGoogle Scholar
  69. 69.
    Shank NI, Pham HH, Waggoner AS, Armitage BA (2013) Twisted cyanines: a non-planar fluorogenic dye with superior photostability and its use in a protein-based fluoromodule. J Am Chem Soc 135:242–251CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Toutchkine A, Kraynov V, Hahn K (2004) Solvent-sensitive dyes to report protein conformational changes in living cells. J Am Chem Soc 125:4132–4145CrossRefGoogle Scholar
  71. 71.
    Bohländer P, Wagenknecht H-A (2013) Synthesis and evaluation of cyanine-styryl dyes with enhanced photostability for fluorescent DNA staining. Org Biomol Chem 11:7458–7462CrossRefPubMedGoogle Scholar
  72. 72.
    Rubner M, Holzhauser C, Bohländer P, Wagenknecht H-A (2012) A “clickable” styryl dye for fluorescent DNA labeling by excitonic and energy transfer interactions. Chem Eur J 18:1299–1302CrossRefPubMedGoogle Scholar
  73. 73.
    Walter H-K, Bohländer PR (2015) Development of a wavelength-shifting fluorescent module for the adenosine aptamer using photostable cyanine dyes. ChemistryOpen 4:92–96CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bohländer PR, Wagenknecht H-A (2015) Bright and photostable cyanine-styryl chromophores with green and red fluorescence color for DNA staining. Methods Appl Fluores 3:044003Google Scholar
  75. 75.
    Holzhauser C, Liebl R, Göpferich A, Wagenknecht H-A, Breunig M (2013) RNA “traffic lights”: an analytical tool to monitor siRNA integrity. ACS Chem Biol 3:6331–6333Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian Schwechheimer
    • 1
  • Marcus Merkel
    • 1
  • Peggy R. Bohländer
    • 1
  • Hans-Achim Wagenknecht
    • 1
  1. 1.Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations