Analysis of Negation Cues for Semantic Orientation Classification of Reviews in Spanish

  • Sofía N. Galicia-Haro
  • Alonso Palomino-Garibay
  • Jonathan Gallegos-Acosta
  • Alexander Gelbukh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9414)


We study the effect of negation cues on semantic orientation prediction. State-of-the-art approaches to semantic orientation derivation are based on automatic classification. We analyze the use of negation cues as features for both supervised and unsupervised methods. We apply such methods on a collection of washing-machine reviews in Spanish. We compare the results of the two approaches and discuss the performance of each negation cue. We found that simple features performed similarly to using more resources.


Semantic orientation Opinion reviews Linguistic features Supervised methods Unsupervised methods 



The fourth author recognizes the support of the Instituto Politécnico Nacional, grants SIP 20152095 and SIP 20152100.


  1. 1.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)CrossRefGoogle Scholar
  2. 2.
    Liu, B.: Sentiment analysis and subjectivity. Handb. Nat. Lang. Process. 2, 627–666 (2010)Google Scholar
  3. 3.
    Liu, B.: Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers, San Rafael (2012)Google Scholar
  4. 4.
    Wiegand, M., Balahur, A., Roth, B., Klakow, D., Montoyo, A.: A survey on the role of negation in sentiment analysis. In: Proceedings of the Workshop on Negation and Speculation in Natural Language Processing, pp. 60–68 (2010)Google Scholar
  5. 5.
    Hatzivassiloglou, V., McKeown, K.R.: Predicting the semantic orientation of adjectives. In: Proceedings of the Eighth Conference of the European Chapter of the Association for Computational Linguistics, EACL 1997, pp. 174–181 (1997)Google Scholar
  6. 6.
    Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 417–424 (2002)Google Scholar
  7. 7.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of EMNLP, pp. 79–86 (2002)Google Scholar
  8. 8.
    Poria, S., Cambria, E., Gelbukh, A.: Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In: Proceedings of EMNLP 2015, Lisbon, pp. 2539–2544 (2015)Google Scholar
  9. 9.
    Poria, S., Gelbukh, A., Hussain, A., Howard, N., Das, D., Bandyopadhyay, S.: Enhanced SenticNet with affective labels for concept-based opinion mining. IEEE Intell. Syst. 28(2), 31–38 (2013)CrossRefGoogle Scholar
  10. 10.
    Agarwal, B., Poria, S., Mittal, N., Gelbukh, A., Hussain, A.: Concept-level sentiment analysis with dependency-based semantic parsing: a novel approach. Cogn. Comput. 7(4), 487–499 (2015)CrossRefGoogle Scholar
  11. 11.
    Cambria, E., Fu, J., Bisio, F., Poria, S.: AffectiveSpace 2: enabling affective intuition for concept-level sentiment analysis. In: Proceedings of Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 508–514 (2015)Google Scholar
  12. 12.
    Poria, S., Cambria, E., Hussain, A., Huang, G.-B.: Towards an intelligent framework for multimodal affective data analysis. Neural Netw. 63, 104–116 (2015)CrossRefGoogle Scholar
  13. 13.
    Poria, S., Cambria, E., Howard, N., Huang, G.-B., Hussain, A.: Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing (2015, in press). doi: 10.1016/j.neucom.2015.01.095
  14. 14.
    Cambria, E., Poria, S., Bisio, F., Bajpai, R., Chaturvedi, I.: The CLSA model: a novel framework for concept-level sentiment analysis. In: Gelbukh, A. (ed.). LNCS, vol. 9042, pp. 3–22. Springer, Heidelberg (2015)Google Scholar
  15. 15.
    Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.-B.: EmoSenticSpace: a novel framework for affective common-sense reasoning. Knowl.-Based Syst. 69, 108–123 (2014)CrossRefGoogle Scholar
  16. 16.
    Martín-Valdivia, M.T., Martínez-Cámara, E., Perea-Ortega, J.M., Ureña López, L.A.: Sentiment polarity detection in Spanish reviews combining supervised and unsupervised approaches. Expert Syst. Appl. 40, 3934–3942 (2013)CrossRefGoogle Scholar
  17. 17.
    Cruz Mata, F., Troyano Jiménez, J.A., de Salamanca Ros, F.E., Rodríguez, F.J.O.: Clasificación de documentos basada en la opinión: experimentos con un corpus de críticas de cine en español. Procesamiento del lenguaje natural 41, 73–80 (2008)Google Scholar
  18. 18.
    Vilares, D., Alonso, M.A., Gómez-Rodríguez, C.: A syntactic approach for opinion mining on Spanish reviews. Nat. Lang. Eng. 1(1), 1–26 (2013)Google Scholar
  19. 19.
    Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers, vol. 2, pp. 90–94 (2012)Google Scholar
  20. 20.
    Wilson, T.,, Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pp. 347–354 (2005)Google Scholar
  21. 21.
    Choi, Y., Cardie, C.: Learning with compositional semantics as structural inference for subsentential sentiment analysis. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 793–801 (2008)Google Scholar
  22. 22.
    Poria, S., Cambria, E., Winterstein, G., Huang, G.-B.: Sentic patterns: dependency-based rules for concept-level sentiment analysis. Knowl.-Based Syst. 69, 45–63 (2014)CrossRefGoogle Scholar
  23. 23.
    Poria, S., Cambria, E., Gelbukh, A., Bisio, F., Hussain, A.: Sentiment data flow analysis by means of dynamic linguistic patterns. IEEE Comput. Intell. Mag. 10(4), 26–36 (2015)CrossRefGoogle Scholar
  24. 24.
    Chikersal, P., Poria, S., Cambria, E.: SeNTU: sentiment analysis of tweets by combining a rule-based classifier with supervised learning. In: Proceedings of the International Workshop on Semantic Evaluation, SemEval 2015, pp. 647–651 (2015)Google Scholar
  25. 25.
    Chikersal, P., Poria, S., Cambria, E., Gelbukh, A., Siong, C.E.: Modelling public sentiment in Twitter: using linguistic patterns to enhance supervised learning. In: Gelbukh, A. (ed.). LNCS, vol. 9042, pp. 49–65. Springer, Heidelberg (2015)Google Scholar
  26. 26.
    Jiménez Zafra, S.M., Cámara, E.M., Valdivia, M.T.M., González, M.D.M.: Tratamiento de la negación en el análisis de opiniones en español. Procesamiento del Lenguaje Natural 54, 37–44 (2015)Google Scholar
  27. 27.
    Díaz-Rangel, I., Sidorov, G., Suárez-Guerra, S.: Creación y evaluación de un diccionario marcado con emociones y ponderado para el español. Onomazein 29, 31–46 (2014)Google Scholar
  28. 28.
    Galicia-Haro, S.N., Gelbukh, A.: Extraction of semantic relations from opinion reviews in Spanish. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI 2014, Part I. LNCS, vol. 8856, pp. 175–190. Springer, Heidelberg (2014)Google Scholar
  29. 29.
    Padró, L., Stanilovsky, E.: Freeling 3.0: towards wider multilinguality. In: Proceedings of the Language Resources and Evaluation Conference (LREC 2012), Istanbul, Turkey, pp. 2473–2479. ELRA (2012)Google Scholar
  30. 30.
    López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)CrossRefGoogle Scholar
  31. 31.
    Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn. 40(12), 3358–3378 (2007)CrossRefzbMATHGoogle Scholar
  32. 32.
    Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., Brunk, C.: Reducing misclassification costs. In: Proceedings of the Eleventh International Conference on Machine Learning, pp. 217–225 (1994)Google Scholar
  33. 33.
    Tang, Y., Zhang, Y.-Q., Chawla, N.V., Krasser, S.: Svms modeling for highly imbalanced classification. IEEE Trans. Syst. Man Cybern. B Cybern. 39(1), 281–288 (2009)CrossRefGoogle Scholar
  34. 34.
    Akbani, R., Kwek, S.S., Japkowicz, N.: Applying support vector machines to imbalanced datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  35. 35.
    Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Folleco, A.: An empirical study of the classification performance of learners on imbalanced and noisy software quality data. Inf. Sci. 259, 571–595 (2014)CrossRefGoogle Scholar
  36. 36.
    Sidorov, G., Miranda-Jiménez, S., Viveros-Jiménez, F., Gelbukh, A., Castro-Sánchez, N., Velásquez, F., Díaz-Rangel, I., Suárez-Guerra, S., Treviño, A., Gordon, J.: Empirical study of machine learning based approach for opinion mining in Tweets. In: Batyrshin, I., González Mendoza, M. (eds.) MICAI 2012, Part I. LNCS, vol. 7629, pp. 1–14. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  37. 37.
    Spitzová, E.: Sintaxis de la lengua española. Masarykova Univerzita, Brno (1994)Google Scholar
  38. 38.
    Blanco, E., Moldovan, D.: Semantic representation of negation using focus detection. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT 2011), pp. 581–589 (2011)Google Scholar
  39. 39.
    Sanz Alonso, B.: La negación en español. In: Actuales tendencias en la enseñanza del español como lengua extranjera II: actas del VI Congreso Internacional de ASELE. pp. 379–384 (1996)Google Scholar
  40. 40.
    Bergareche, B.C.: Negación doble y negación simple en español moderno. Revista de filología románica (9), 63–102 (1992)Google Scholar
  41. 41.
    Manning, C.D., Raghavan, P., Schuetze, H.: Information Retrieval. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  42. 42.
    Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)Google Scholar
  43. 43.
    Poria, S., Gelbukh, A., Agarwal, B., Cambria, E., Howard, N.: Common sense knowledge based personality recognition from text. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 484–496. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  44. 44.
    Pakray, P., Poria, S., Bandyopadhyay, S., Gelbukh, A.: Semantic textual entailment recognition using UNL. Polibits 43, 23–27 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sofía N. Galicia-Haro
    • 1
  • Alonso Palomino-Garibay
    • 1
  • Jonathan Gallegos-Acosta
    • 2
  • Alexander Gelbukh
    • 3
  1. 1.Faculty of SciencesUNAMMexico CityMexico
  2. 2.Postgraduate Program in Computer Science and EngineeringUNAMMexico CityMexico
  3. 3.Centro de Investigación En ComputaciónInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations