Mexican International Conference on Artificial Intelligence

Advances in Artificial Intelligence and Its Applications pp 3-25 | Cite as

Measuring Non-compositionality of Verb-Noun Collocations Using Lexical Functions and WordNet Hypernyms

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9414)

Abstract

In such verb-noun combinations as draw a conclusion, lend support, take a step, the verb acquires a meaning different from its typical meaning usually represented by the first sense in WordNet thus making a correct compositional analysis hard or even impossible. Such non-compositional word combinations are called collocations. The semantics and syntactical properties of collocations can be formalized using lexical functions, a concept of the Meaning-Text Theory. In this paper we realized two series of experiments, both with supervised learning methods on automatic detection of lexical functions in verb-noun collocations using WordNet hypernyms. In the first experimental series, we used hypernyms which correspond to the manually annotated WordNet senses of verbs and nouns in the dataset. In the second series, we used hypernyms corresponding to the typical (first) sense of the verbs. Comparing the results of both experiments we found that the performance of supervised learning on some lexical functions was better in the second case in spite of the fact that the first sense was not the sense of the verbs they have in collocations. This shows that for such lexical functions, the semantics of the verbs is closer to their typical senses and thus non-compositionality of such collocations is weaker. We propose to use the difference in lexical function detection based on the actual sense and the first sense as a simple measure of non-compositionality of verb-noun collocations.

Keywords

Lexical functions Verb-noun collocations Supervised learning Non-compositionality of collocations Wordnet hypernyms 

Notes

Acknowledgements

The work was done under partial support of Mexican Government: SNI and Instituto Politécnico Nacional, grants SIP 20152095 and SIP 20152100.

References

  1. 1.
    Alonso-Rorís, V.M., Santos Gago, J.M., Pérez Rodríguez, R., Rivas Costa, C., Gómez Carballa, M.A., Anido Rifón, L.: Information extraction in semantic, highly-structured, and semi-structured web sources. Polibits 49, 69–75 (2014)Google Scholar
  2. 2.
    Apresjan, J.D.: Lexical Semantics. Vostochnaya Literatura, Russian Academy of Sciences, Moscow (1995). (In Russian)Google Scholar
  3. 3.
    Apresjan, J.D.: Systematic Lexicography. Oxford University Press, Oxford (2000)Google Scholar
  4. 4.
    Baldwin, T., Bannard, C., Tanaka, T., Widdows, D.: An empirical model of multiword expression decomposability. In: Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and Treatment, vol. 18, pp. 89–96. Association for Computational Linguistics (2003)Google Scholar
  5. 5.
    Agarwal, B., Poria, S., Mittal, N., Gelbukh, A., Hussain, A.: Concept-level sentiment analysis with dependency-based semantic parsing: a novel approach. Cogn. Comput. 7(4), 1–13 (2015)CrossRefGoogle Scholar
  6. 6.
    Biemann, C., Giesbrecht, E.: Distributional semantics and compositionality 2011: shared task description and results. In: Proceedings of the Workshop on Distributional Semantics and Compositionality, pp. 21–28. Association for Computational Linguistics (2011)Google Scholar
  7. 7.
    Bu, F., Zhu, X., Li, M.: Measuring the non-compositionality of multiword expressions. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 116–124. Association for Computational Linguistics (2010)Google Scholar
  8. 8.
    Fazly, A., Stevenson, S.: Distinguishing subtypes of multiword expressions using linguistically motivated statistical measures. In: Grégoire, N., Evert, S., Krenn, B. (eds.) Proceedings of the ACL 2007 Workshop on a Broader Perspective on Multiword Expressions, pp. 9–16. Czech Republic, Prague (2007)Google Scholar
  9. 9.
    Fontenelle, T.: Using lexical functions to discover metaphors. In: Proceedings of the 6th EURALEX International Congress, pp. 271–278 (1994)Google Scholar
  10. 10.
    Gelbukh, A., Kolesnikova, O.: Supervised learning for semantic classification of Spanish collocations. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds.) MCPR 2010. LNCS, vol. 6256, pp. 362–371. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Hashimoto, K., Stenetorp, P., Miwa, M., Tsuruoka, Y.: Task-Oriented Learning of Word Embeddings for Semantic Relation Classification, arXiv preprint arXiv:1503.00095 (2015)
  12. 12.
    Hirst, G., St-Onge, D.: Lexical chains as representations of context for the detection and correction of malapropisms. In: WordNet: An electronic Lexical Database, pp. 305–332 (1998)Google Scholar
  13. 13.
    Inkpen, D., Razavi, A.H.: Topic classification using latent Dirichlet allocation at multiple levels. Int. J. Comput. Linguist. Appl. 6(1), 43–58Google Scholar
  14. 14.
    Jimenez, S., Gonzalez, F.A., Gelbukh, A.: Soft cardinality in semantic text processing: experience of the SemEval international competitions. Polibits 51, 63–72 (2015)CrossRefGoogle Scholar
  15. 15.
    Johannsen, A., Alonso, H.M., Rishøj, C., Søgaard, A.: Shared task system description: frustratingly hard compositionality prediction. In: Proceedings of the Workshop on Distributional Semantics and Compositionality, pp. 29–32. Association for Computational Linguistics (2011)Google Scholar
  16. 16.
    Huynh, D., Tran, D., Ma, W., Sharma, D.: Semantic similarity measure using relational and latent topic features. Int. J. Comput. Linguist. Appl. 5(1), 11–25 (2014)Google Scholar
  17. 17.
    Kahane, S.: What is a natural language and how to describe it? Meaning-text approaches in contrast with generative approaches. In: Gelbukh, A. (ed.) CICLing 2001. LNCS, vol. 2004, pp. 1–17. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Kahane, S.: The meaning-text theory. Dependency Valency Int. Handb. Contemp. Res. 1, 546–570 (2003)Google Scholar
  19. 19.
    Katz, G., Giesbrecht, E.: Automatic identification of non-compositional multi-word expressions using latent semantic analysis. In: Proceedings of the Workshop on Multiword Expressions: Identifying and Exploiting Underlying Properties, pp. 12–19. Association for Computational Linguistics (2006)Google Scholar
  20. 20.
    Kim, S.N., Baldwin, T.: Detecting compositionality of English verb-particle constructions using semantic similarity. In: Proceedings of the 7th Meeting of the Pacific Association for Computational Linguistics PACLING 2007, pp. 40–48 (2007)Google Scholar
  21. 21.
    Kittredge, R., Iordanskaja, L., Polguère, A.: Multilingual text generation and the meaning-text theory. In: Proceedings of TMI-88, Pittsburgh, PA (1988)Google Scholar
  22. 22.
    Kolesnikova, O.: Discriminative ability of WordNet senses on the task of detecting lexical functions in Spanish verb-noun collocations. Int. J. Comput. Linguist. Appl. 5(2), 61–86 (2014)Google Scholar
  23. 23.
    Kunchukuttan, A., Damani, O.P.: A system for compound noun multiword expression extraction for Hindi. In: 6th International Conference on Natural Language Processing, pp. 20–29 (2008)Google Scholar
  24. 24.
    Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, vol. 2, pp. 768–774. Association for Computational Linguistics (1998)Google Scholar
  25. 25.
    Lyons, J.: Linguistic Semantics: An Introduction. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  26. 26.
    McCarthy, D., Keller, B., Carroll, J.: Detecting a continuum of compositionality in phrasal verbs. In: Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and Treatment, vol. 18, pp. 73–80. Association for Computational Linguistics (2003)Google Scholar
  27. 27.
    McCarthy, D., Venkatapathy, S., Joshi, A.K.: Detecting compositionality of verb-object combinations using selectional preferences. In: EMNLP-CoNLL, pp. 369–379 (2007)Google Scholar
  28. 28.
    McIntosh, C., Francis, B., Poole, R. (eds.): Oxford Collocations Dictionary for Students of English. Oxford University Press, Oxford (2009)Google Scholar
  29. 29.
    Mel’čuk, I.A., Žolkovskij, A.K.: Towards a functioning ‘Meaning-Text’ model of language. Linguistics 8(57), 10–47 (1970)Google Scholar
  30. 30.
    Mel’čuk, I.A.: Toward a Theory of Meaning-Text Linguistic Models. Nauka Publishers, Moscow (1974)Google Scholar
  31. 31.
    Mel’čuk, I.A.: Lexical functions: a tool for the description of lexical relations in a lexicon. In: Wanner, L. (ed.) Lexical Functions in Lexicography and Natural Language Processing, pp. 37–102. Benjamins Academic Publishers, Amsterdam, Philadelphia, PA (1996)Google Scholar
  32. 32.
    Mel’čuk, I.A.: Semantics: From Meaning to Text, vol. 3. John Benjamins Publishing Company, Amsterdam (2015)Google Scholar
  33. 33.
    Milićević, J.: A short guide to the meaning-text linguistic theory. J. Koralex 8, 187–233 (2006)Google Scholar
  34. 34.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  35. 35.
    Miller, G.A., Leacock, C., Tengi, R., Bunker, R.T.: A semantic concordance. In: Proceedings of the Workshop on Human Language Technology Association for Computational Linguistics, pp. 303–308 (1993)Google Scholar
  36. 36.
    Mohler, M., Tomlinson, M., Rink, B.: Cross-lingual semantic generalization for the detection of metaphor. Int. J. Comput. Linguist. Appl. 6(2), 115–136 (2015)Google Scholar
  37. 37.
    Nakagawa, H., Mori, T.: Automatic term recognition based on statistics of compound nouns and their components. Terminology 9(2), 201–219 (2003)CrossRefGoogle Scholar
  38. 38.
    Orliac, B., Dillinger, M.: Collocation extraction for machine translation. In: Proceedings of Machine Translation Summit IX, pp. 292–298 (2003)Google Scholar
  39. 39.
    Pakray, P., Neogi, S., Bhaskar, P., Poria, S., Bandyopadhyay, S., Gelbukh, A.: A textual entailment system using anaphora resolution. In: System Report. Recognizing Textual Entailment Track (TAC RTE). Notebook. National Institute of Standards and Technology (2011)Google Scholar
  40. 40.
    Pakray, P., Pal, S., Poria, S., Bandyopadhyay, S., Gelbukh, A.: JU_CSE_TAC: textual entailment recognition system at TAC RTE-6. In: System Report, Text Analysis Conference Recognizing Textual Entailment Track (TAC RTE). Notebook. National Institute of Standards and Technology (2010)Google Scholar
  41. 41.
    Pakray, P., Poria, S., Bandyopadhyay, S., Gelbukh, A.: Semantic textual entailment recognition using UNL. Polibits 43, 23–27 (2011)CrossRefGoogle Scholar
  42. 42.
    Pecina, P.: An extensive empirical study of collocation extraction methods. In: Proceedings of the ACL Student Research Workshop, pp. 13–18. Association for Computational Linguistics (2005)Google Scholar
  43. 43.
    Poria, S., Agarwal, B., Gelbukh, A., Hussain, A., Howard, N.: Dependency-based semantic parsing for concept-level text analysis. In: Gelbukh, A. (ed.) CICLing 2014, Part I. LNCS, vol. 8403, pp. 113–127. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  44. 44.
    Poria, S., Cambria, E., Gelbukh, A.: Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In: Proceedings of EMNLP 2015, Lisbon, pp. 2539–2544 (2015)Google Scholar
  45. 45.
    Poria, S., Cambria, E., Gelbukh, A., Bisio, F., Hussain, A.: Sentiment data flow analysis by means of dynamic linguistic patterns. IEEE Comput. Intell. Mag. 10(4), 26–36 (2015)CrossRefGoogle Scholar
  46. 46.
    Poria, S., Cambria, E., Howard, N., Huang, G.-B., Hussain, A.: Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing (2015, in press). doi: 10.1016/j.neucom.2015.01.095
  47. 47.
    Poria, S., Cambria, E., Winterstein, G., Huang, G.-B.: Sentic patterns: dependency-based rules for concept-level sentiment analysis. Knowl.-Based Syst. 69, 45–63 (2014)CrossRefGoogle Scholar
  48. 48.
    Poria, S., Gelbukh, A., Agarwal, B., Cambria, E., Howard, N.: Common sense knowledge based personality recognition from text. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 484–496. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  49. 49.
    Poria, S., Gelbukh, A., Das, D., Bandyopadhyay, S.: Fuzzy clustering for semi-supervised learning – case study: construction of an emotion lexicon. In: Batyrshin, I., González Mendoza, M. (eds.) MICAI 2012, Part I. LNCS, vol. 7629, pp. 73–86. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  50. 50.
    Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.-B.: EmoSenticSpace: a novel framework for affective common-sense reasoning. Knowl.-Based Syst. 69, 108–123 (2014)CrossRefGoogle Scholar
  51. 51.
    Reddy, S., McCarthy, D., Manandhar, S., Gella, S.: Exemplar-based word-space model for compositionality detection: shared task system description. In: Proceedings of the Workshop on Distributional Semantics and Compositionality, pp. 54–60. Association for Computational Linguistics (2011)Google Scholar
  52. 52.
    Rinaldi, F., Lithgow-Serrano, O., López-Fuentes, A., Gama-Castro, S., Balderas-Martínez, Y.I., Solano-Lira, H., Collado-Vides, J.: An approach towards semi-automated biomedical literature curation and enrichment for a major biological database. Polibits 52, 25–31 (2015)Google Scholar
  53. 53.
    Rohde, D.L., Gonnerman, L.M., Plaut, D.C.: An improved model of semantic similarity based on lexical co-occurrence. Commun. ACM 8, 627–633 (2006)Google Scholar
  54. 54.
    Sag, I.A., Baldwin, T., Bond, F., Copestake, A., Flickinger, D.: Multiword expressions: a pain in the neck for NLP. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 1–15. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  55. 55.
    Schütze, H.: Automatic word sense discrimination. Comput. Linguist. 24(1), 97–123 (1998)Google Scholar
  56. 56.
    Sidorov, G.: Should syntactic N-grams contain names of syntactic relations? Int. J. Comput. Linguist. Appl. 5(2), 23–46 (2014)Google Scholar
  57. 57.
    Sidorov, G., Kobozeva, I., Zimmerling, A., Chanona-Hernández, L., Kolesnikova, O.: Modelo computacional del diálogo basado en reglas aplicado a un robot guía móvil. Polibits 50, 35–42 (2014)CrossRefGoogle Scholar
  58. 58.
    Smadja, F.A., McKeown, K.R.: Automatically extracting and representing collocations for language generation. In: Proceedings of the 28th Annual Meeting on Association for Computational Linguistics, pp. 252–259. Association for Computational Linguistics (1990)Google Scholar
  59. 59.
    Svensson, M.H.: A very complex criterion of fixedness: non-compositionality. Phraseology Interdisc. Perspect. S. Granger 81, 81–93 (2008)CrossRefGoogle Scholar
  60. 60.
    Van de Cruys, T., Moirón, B.V.: Semantics-based multiword expression extraction. In: Proceedings of the Workshop on a Broader Perspective on Multiword Expressions, pp. 25–32. Association for Computational Linguistics (2007)Google Scholar
  61. 61.
    Venkatapathy, S., Joshi, A.K.: Measuring the relative compositionality of verb-noun (VN) collocations by integrating features. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 899–906. Association for Computational Linguistics (2005)Google Scholar
  62. 62.
    Vossen, P. (ed.): EuroWordNet: a Multilingual Database with Lexical Semantic Networks. Kluwer Academic Publishers, Dordrecht (1998)MATHGoogle Scholar
  63. 63.
    Wanner, L. (ed.): Recent Trends in Meaning-Text Theory. John Benjamins Publishers, Amsterdam, Philadelphia (1997)Google Scholar
  64. 64.
    Witten, I.H., Frank, E., Hall, M.A.: Data mining: Practical machine learning tools and techniques. Morgan Kaufmann Publishers, MA, USA (2011)Google Scholar
  65. 65.
    Zabokrtský, Z.: Resemblances between meaning-text theory and functional generative description. In: Proceedings of Second International Conference on Meaning–Text Theory, Moscow (2005)Google Scholar
  66. 66.
    Žolkovskij, A.K., Mel’čuk, I.A.: On a possible method an instruments for semantic synthesis (of texts), in Russian. Sci. Technol. Inf. 6, 23–28 (1965). (in Russian)Google Scholar
  67. 67.
    Žolkovskij, A.K., Mel’čuk, I.A.: On semantic synthesis (of texts), in Russian. Probl. Cybern. 19, 177–238 (1967). (in Russian)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Superior School of Computer SciencesInstituto Politécnico NacionalMexico CityMexico
  2. 2.Centro de Investigación en ComputaciónInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations