Some Themes in High-Dimensional Statistics

  • Arnoldo Frigessi
  • Peter Bühlmann
  • Ingrid K. Glad
  • Sylvia Richardson
  • Marina Vannucci
Conference paper
Part of the Abel Symposia book series (ABEL, volume 11)


The symposium covered a broad spectrum of themes on High-Dimensional Statistics. We present here a short overview of some of the topics discussed at the symposium: high-dimensional inference in regression, high-dimensional causal inference, Bayesian variable selection for high-dimensional analysis, and integration of multiple high-dimensional data, but this categorization is not exhaustive. The contributions by some of the participants, appearing as chapters in the book, include both in-depth reviews and development of new statistical methodology, applications and theory.


Copy Number Alteration Dirichlet Process Group Lasso MCMC Algorithm Bayesian Variable Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Afsari, B., Braga-Neto, U.M., Geman, D.: Rank discriminants for predicting phenotypes from rna expression. Ann. Appl. Stat. 8(3), 1469–1491 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Albert, J., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88, 669–679 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Armagan, A., Dunson, D., Lee, J.: Generalized double Pareto shrinkage. Stat. Sin. 23, 119–143 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Belloni, A., Chen, D., Chernozhukov, V., Hansen, C.: Sparse models and methods for optimal instruments with an application to eminent domain. Econometrica 80, 2369–2429 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Benjamini, Y., Yekutieli, D.: False discovery rate-adjusted multiple confidence intervals for selected parameters. J. Am. Stat. Assoc. 100, 71–81 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Bergersen, L., Glad, I., Lyng, H.: Weighted lasso with data integration. Stat. Appl. Genet. Mol. Biol. 10, 1–29 (2011)MathSciNetGoogle Scholar
  7. 7.
    van de Wiel, M.A., Verlaat, W., van Wieringen, W.N., Wilting, S.M.: Better prediction by use of co-data: adaptive group-regularized ridge regression. Preprint (2014). arXiv:1411.3496Google Scholar
  8. 8.
    Bhadra, A., Mallick, B.K.: Joint high-dimensional Bayesian variable and covariance selection with an application to eqtl analysis. Biometrics 69(2), 447–457 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Bottolo, L., Chadeau-Hyam, M., Hastie, D.I., Langley, S.R., Petretto, E., Tiret, L., Tregouet, D., Richardson, S.: Ess++: a c++ objected-oriented algorithm for Bayesian stochastic search model exploration. Bioinformatics 27, 587–588 (2011)CrossRefGoogle Scholar
  10. 10.
    Bottolo, L., Petretto, E., Blankenberg, S., Cambien, F., Cook, S.A., Tiret, L., Richardson, S.: Bayesian detection of expression quantitative trait loci hot spots. Genetics 189(4), 1449–1459 (2011)CrossRefGoogle Scholar
  11. 11.
    Bottolo, L., Chadeau-Hyam, M., Hastie, D.I., Zeller, T., Liquet, B., Newcombe, P., Yengo, L., Wild, P.S., Schillert, A., Ziegler, A., Nielsen, S.F., Butterworth, A.S., Ho, W.K., Castagne, R., Munzel, T., Tregouet, D., Falchi, M., Cambien, F., Nordestgaard, B.G., Fumeron, F., Tybjaerg-Hansen, A., Froguel, P., Danesh, J., Petretto, E., Blankenberg, S., Tiret, L., Richardson, S.: Guess-ing polygenic associations with multiple phenotypes using a gpu-based evolutionary stochastic search algorithm. PLoS Genet. 9, e1003657 (2013)Google Scholar
  12. 12.
    Bottolo, L., Richardson, S.: Evolutionary stochastic search. Bayesian Anal. 5(3), 583–618 (2010)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Brown, P.J., Vannucci, M., Fearn, T., Multivariate Bayesian variable selection and prediction. J. R. Stat. Soc. Ser. B 60, 627–641 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Bühlmann, P.: Statistical significance in high-dimensional linear models. Bernoulli 19, 1212–1242 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Bühlmann, P., Meinshausen, N.: Magging: maximin aggregation for inhomogeneous large-scale data. Proc. IEEE (2015, preprint). arXiv:1409.2638Google Scholar
  16. 16.
    Bühlmann, P., van de Geer, S.: Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, New York (2011)CrossRefGoogle Scholar
  17. 17.
    Bühlmann, P., Peters, J., Ernest, J.: CAM: causal additive models, high-dimensional order search and penalized regression. Ann. Stat. 42, 2526–2556 (2014)CrossRefzbMATHGoogle Scholar
  18. 18.
    Cai, V., Dunson, D.B.: Bayesian covariance selection in generalized linear mixed models. Biometrics 62, 446–457 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Carbonetto, P., Stephens, M.: Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies. Bayesian Anal. 7(1), 73–108 (2012)MathSciNetGoogle Scholar
  20. 20.
    Carvalho, C.M., Polson, N.G., Scott, J.G.: The horseshoe estimator for sparse signals. Biometrika 97, 465–480 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Casella, G., Ghosh, M., Gill, J., Kyung, M.: Penalized regression, standard errors, and Bayesian lassos. Bayesian Anal. 5(2), 369–411 (2010)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Chen, Z., Dunson, D.B.: Random effects selection in linear mixed models. Biometrics 59, 762–769 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Chickering, D.M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507–554 (2002)MathSciNetGoogle Scholar
  24. 24.
    Clyde, M., George, E.I.: Model uncertainty. Stat. Sci. 19, 81–94 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Colombo, D., Maathuis, M.H., Kalisch, M., Richardson, T.S.: Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann. Stat. 40, 294–321 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Dezeure, R., Bühlmann, P., Meier, L., Meinshausen, N.: High-dimensional inference: confidence intervals, p-values and R-software hdi. Stat. Sci. 30, 533–558 (2015)CrossRefGoogle Scholar
  27. 27.
    Dunson, D.B., Herring, A.H., Engel, S.M.: Bayesian selection and clustering of polymorphisms in functionally-related gene. J. Am. Stat. Assoc. 103, 534–546 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Ernest, J., Bühlmann, P.: Marginal integration for nonparametric causal inference. Electro. J. Stat. Preprint (2014). arXiv:1405.1868Google Scholar
  29. 29.
    Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Fan, Y., Li, R.: Variable selection in linear mixed effects models. Ann. Stat. 40, 2043–2068 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Fan, J., Lv, J.: A selective overview of variable selection in high dimensional feature space. Stat. Sin. 20, 101–148 (2010)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Ferkingstad, E., Frigessi, A., Rue, H., Thorleifsson, G., Kong, A.: Unsupervised empirical Bayesian multiple testing with external covariates. Ann. Appl. Stat. 2, 714–735 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Fithian, W., Sun, D., Taylor, J.: Optimal inference after model selection (2014, preprint). arXiv:1410.2597Google Scholar
  34. 34.
    Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010)CrossRefGoogle Scholar
  35. 35.
    Frühwirth-Schnatter, S., Tüchler, R.: Bayesian parsimonious covariance estimation for hierarchical linear mixed models. Stat. Comput. 18(1), 1–13 (2008)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Gagnon-Bartsch, J., Speed, T.: Using control genes to correct for unwanted variation in microarray data. Biostatistics 13(3), 539–552 (2012)CrossRefGoogle Scholar
  37. 37.
    George, E.I.: The variable selection problem. J. Am. Stat. Assoc. 95(452), 1304–1308 (2000)CrossRefzbMATHGoogle Scholar
  38. 38.
    George, E.I., McCulloch, R.E.: Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 85, 398–409 (1993)Google Scholar
  39. 39.
    Griffin, J., Latuszynski, K.S., Steel, M.: Individual adaptation: an adaptive mcmc scheme for variable selection problems (2014, preprint). arXiv:1412.6760Google Scholar
  40. 40.
    Griffin, J.E., Brown, P.J.: Inference with normal-gamma prior distributions in regression problems. Bayesian Anal. 5, 17–188 (2010)MathSciNetGoogle Scholar
  41. 41.
    Griffin, J.E., Brown, P.J.: Structuring shrinkage: some correlated priors for regression. Biometrika 99(2), 481–487 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Guan, Y., Stephens, M.: Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat. 5, 1780–1815 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Gustafson, P., Lefebvre, G.: Bayesian multinomial regression with class-specific predictor selection. Ann. Appl. Stat. 2, 1478–1502 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Hans, C.: Bayesian lasso regression. Biometrika 96, 835–845 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Hans, C.: Model uncertainty and variable selection in Bayesian lasso regression. Stat. Comput. 20, 221–229 (2010)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Hans, C., Dobra, A., West, M.: Shotgun stochastic search for “large p” regression. J. Am. Stat. Assoc. 102(478), 507–516 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning; Data Mining, Inference and Prediction, 2nd edn. Springer, New York (2009)zbMATHGoogle Scholar
  48. 48.
    Holmes, C.C., Held, L.: Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Anal. 1, 145–168 (2006)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Jankova, J., van de Geer, S.: Confidence intervals for high-dimensional inverse covariance estimation. Electron. J. Stat. 9, 1205–1229 (2015)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Javanmard, A., Montanari, A.: Confidence intervals and hypothesis testing for high-dimensional regression. J. Mach. Learn. Res. 15, 2869–2909 (2014)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Johnson, V.E., Rossell, D.: Bayesian model selection in high-dimensional settings. J. Am. Stat. Assoc. 107(498), 649–660 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8, 613–636 (2007)zbMATHGoogle Scholar
  53. 53.
    Kalisch, M., Mächler, M., Colombo, D., Maathuis, M.H., Bühlmann, P.: Causal inference using graphical models with the R package pcalg. J. Stat. Softw. 47, 1–26 (2012)CrossRefGoogle Scholar
  54. 54.
    Kim, S., Dahl, D.B., Vannucci, M.: Spiked Dirichlet process prior for Bayesian multiple hypothesis testing in random effects models. Bayesian Anal. 4, 707–732 (2010)MathSciNetGoogle Scholar
  55. 55.
    Kinney, S.K., Dunson, D.B.: Fixed and random effects selection in linear and logistic models. Biometrics 63(3), 690–698 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  56. 56.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)Google Scholar
  57. 57.
    Kristensen, V.N., Lingjærde, O.E., Russnes, H.G., Vollan, H.K.M., Frigessi, A., Børresen-Dale, A.-L.: Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer 14(5), 299–313 (2014)CrossRefGoogle Scholar
  58. 58.
    Kundu, S., Dunson, D.B.: Bayes variable selection in semiparametric linear models. J. Am. Stat. Assoc. 109(505), 437–447 (2014)CrossRefMathSciNetGoogle Scholar
  59. 59.
    Kwon, D.W., Tadesse, M.G., Sha, N., Pfeiffer, R.M., Vannucci, M.: Identifying biomarkers from mass spectrometry data with ordinal outcomes. Cancer Informat. 3, 19–28 (2007)Google Scholar
  60. 60.
    Li, Q., Lin, v: The Bayesian elastic net. Bayesian Anal. 5(1), 151–170 (2010)CrossRefMathSciNetGoogle Scholar
  61. 61.
    Lim, M., Hastie, T.: glinternet (2013). R package version 0.9.0Google Scholar
  62. 62.
    Lippert, C., Listgarten, J., Liu, Y., Kadie, C.M., Davidson, R.I., Heckerman, D.: Fast linear mixed models for genome-wide association studies. Nat. Methods 8, 833–835 (2011)CrossRefGoogle Scholar
  63. 63.
    Lockhart, R., Taylor, J., Tibshirani, R.J., Tibshirani, R.: A significance test for the Lasso (with discussion). Ann. Stat. 42, 413–468 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  64. 64.
    Maathuis, M.H., Kalisch, M., Bühlmann, P.: Estimating high-dimensional intervention effects from observational data. Ann. Stat. 37, 3133–3164 (2009)CrossRefzbMATHGoogle Scholar
  65. 65.
    Maathuis, M.H., Colombo, D., Kalisch, M., Bühlmann, P.: Predicting causal effects in large-scale systems from observational data. Nat. Methods 7, 247–248 (2010)CrossRefGoogle Scholar
  66. 66.
    MacLehose, R.F., Dunson, D.B., Herring, A.H., Hoppin, J.A.: Bayesian methods for highly correlated exposure data. Epidemiology 18(2), 199–207 (2007)CrossRefGoogle Scholar
  67. 67.
    Mandozzi, J., Bühlmann, P.: Hierarchical testing in the high-dimensional setting with correlated variables. J. Am. Stat. Assoc. (2015, preprint). doi: 10.1080/01621459.2015.1007209. arXiv:1312.5556Google Scholar
  68. 68.
    Meier, L., Meinshausen, N., Dezeure, R.: hdi: High-Dimensional Inference (2014) R package version 0.1-2Google Scholar
  69. 69.
    Meinshausen, N.: Hierarchical testing of variable importance. Biometrika 95, 265–278 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  70. 70.
    Meinshausen, N.: Group-bound: confidence intervals for groups of variables in sparse high-dimensional regression without assumptions on the design. J. R. Stat. Soc. Ser. B (2015, preprint). doi: 10.1111/rssb.12094. arXiv:1309.3489Google Scholar
  71. 71.
    Meinshausen, N., Bühlmann, P.: Stability selection (with discussion). J. R. Stat. Soc. Ser. B 72, 417–473 (2010)CrossRefGoogle Scholar
  72. 72.
    Meinshausen, N., Bühlmann, P.: Maximin effects in inhomogeneous large-scale data. Ann. Stat. 43, 1801–1830 (2015)CrossRefGoogle Scholar
  73. 73.
    Meinshausen, N., Meier, L., Bühlmann, P.: P-values for high-dimensional regression. J. Am. Stat. Assoc. 104, 1671–1681 (2009)CrossRefzbMATHGoogle Scholar
  74. 74.
    Mitchell, T.J., Beauchamp, J.J.: Bayesian variable selection in linear regression. J. Am. Stat. Assoc. 83, 1023–1036 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  75. 75.
    Oates, C.J., Mukherjee, S.: Joint structure learning of multiple non-exchangeable networks (2014, preprint). arXiv:1402.5640Google Scholar
  76. 76.
    Oates, C.J., Korkola, J., Gray, J.W., Mukherjee, S.: Joint estimation of multiple related biological networks. Ann. Appl. Stat. 8(3), 1892–1919 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  77. 77.
    O’Hara, R.B., Sillanpää, M.J.: A review of Bayesian variable selection methods: What, how and which. Bayesian Anal. 4(1), 85–118 (2009)CrossRefMathSciNetGoogle Scholar
  78. 78.
    Park, T., Casella, G.: The Bayesian lasso. J. Am. Stat. Assoc. 103(482), 681–686 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  79. 79.
    Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  80. 80.
    Peng, J., Zhu, J., Bergamaschi, A., Han, W., Noh, D.-Y., Pollack, J.R., Wang, P.: Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. Ann. Appl. Stat. 4(1), 53 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  81. 81.
    Peters, J., Meinshausen, N., Bühlmann, P.: Causal inference using invariant prediction: identification and confidence intervals. J. R. Stat. Soc. Ser. B (2015, preprint). arXiv:1501.01332Google Scholar
  82. 82.
    Polson, N.G., Scott, J.G.: Data augmentation for non-Gaussian regression models using variance-mean mixtures. Biometrika 100(2), 549–571 (2013)CrossRefMathSciNetGoogle Scholar
  83. 83.
    Quintana, M.A., Conti, D.V.: Integrative variable selection via Bayesian model uncertainty. Stat. Med. 32(28), 4938–4953 (2013)CrossRefMathSciNetGoogle Scholar
  84. 84.
    Ishwaran, H., Rao, J.S.: Spike and slab variable selection: frequentist and Bayesian strategies. Ann. Stat. 33, 730–773 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  85. 85.
    Ren, Z., Sun, T., Zhang, C.-H., Zhou, H.: Asymptotic normality and optimalities in estimation of large Gaussian graphical models. Ann. Stat. 43, 991–1026 (2015)CrossRefMathSciNetGoogle Scholar
  86. 86.
    Richardson, S., Bottolo, L., Rosenthal, J.S.: Bayesian models for sparse regression analysis of high dimensional data. Bayesian Stat. 9, 539–569 (2010)Google Scholar
  87. 87.
    Ročková, V., George, E.I.: Emvs: the em approach to Bayesian variable selection. J. Am. Stat. Assoc. 109(506), 828–846 (2014)CrossRefGoogle Scholar
  88. 88.
    Rothenhäusler, D., Meinshausen, N., Bühlmann, P.: Confidence intervals for maximin effects in inhomogeneous large-scale data. In: The Abel Symposium 2014 Book, pp. 255–277 (2015)Google Scholar
  89. 89.
    Schelldorfer, J., Bühlmann, P., van de Geer, S.: Estimation for high-dimensional linear mixed-effects models using 1-penalization. Scand. J. Stat. 38, 197–214 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  90. 90.
    Schmidt, M., Niculescu-Mizil, A., Murphy, K.: Learning graphical model structure using l1-regularization paths. In: Proceedings of the 22nd National Conference on Artificial Intelligence, vol. 2, pp. 1278–1283. AAAI Press/MIT Press, Menlo Park, Cambridge, MA (2007)Google Scholar
  91. 91.
    Scott, J.G., Berger, J.O.: Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Ann. Stat. 38(5), 2587–2619 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  92. 92.
    Scott-Boyer, M.P., Imholte, G.C., Tayeb, A., Labbe, A., Deschepper, C.F., Gottardo, R.: An integrated hierarchical Bayesian model for multivariate eqtl mapping. Stat. Appl. Genet. Mol. Biol. 11(4) (2012)Google Scholar
  93. 93.
    Sha, N., Vannucci, M., Tadesse, M.G., Brown, P.J., Dragoni, I., Davies, N., Roberts, T.C., Contestabile, A., Salmon, N., Buckley, C., Falciani, F.: Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage. Biometrics 60(3), 812–819 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  94. 94.
    Sha, N., Tadesse, M.G., Vannucci, M.: Bayesian variable selection for the analysis of microarray data with censored outcome. Bioinformatics 22(18), 2262–2268 (2006)CrossRefGoogle Scholar
  95. 95.
    Shah, R.D., Samworth, R.J.: Variable selection with error control: another look at Stability Selection. J. R. Stat. Soc. Ser. B 75, 55–80 (2013)CrossRefMathSciNetGoogle Scholar
  96. 96.
    Shen, R., Olshen, A.B., Ladanyi, M.: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25(22), 2906–2912 (2009)CrossRefGoogle Scholar
  97. 97.
    Som, A., Hans, C.M., MacEachern, S.N.: Block hyper-g priors in Bayesian regression (2014, preprint). arXiv:1406.6419Google Scholar
  98. 98.
    Sørensen, Ø., Vitelli, V., Frigessi, A., Arjas, E.: Bayesian inference from rank data (2014, preprint). arXiv:1405.7945Google Scholar
  99. 99.
    Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press, Cambridge (2000)Google Scholar
  100. 100.
    Städler, N., Bühlmann, P., van de Geer, S.: 1-penalization for mixture regression models (with discussion). Test 19, 209–285 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  101. 101.
    Stekhoven, D.J., Moraes, I., Sveinbjörnsson, G., Hennig, L., Maathuis, M.H., Bühlmann, P.: Causal stability ranking. Bioinformatics 28, 2819–2823 (2012)CrossRefGoogle Scholar
  102. 102.
    Stingo, F.C., Vannucci, M.: Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data. Bioinformatics 27(4), 495–501 (2011)CrossRefGoogle Scholar
  103. 103.
    Stingo, F.C., Chen, Y.A., Tadesse, M.G., Vannucci, M.: Incorporating biological information in Bayesian models for the selection of pathways and genes. Ann. Appl. Stat. 5(3), 1978–2002 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  104. 104.
    Taylor, J., Lockhart, R., Tibshirani, R.J., Tibshirani, R.: Exact post-selection inference for forward stepwise and least angle regression (2014, preprint). arXiv:1401.3889Google Scholar
  105. 105.
    Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  106. 106.
    van de Geer, S., Bühlmann, P.: 0-penalized maximum likelihood for sparse directed acyclic graphs. Ann. Stat. 41, 536–567 (2013)Google Scholar
  107. 107.
    van de Geer, S., Bühlmann, P., Ritov, Y., Dezeure, R.: On asymptotically optimal confidence regions and tests for high-dimensional models. Ann. Stat. 42, 1166–1202 (2014)CrossRefzbMATHGoogle Scholar
  108. 108.
    van de Geer, S., Stucky, B.: χ 2-confidence sets in high-dimensional regression. In: The Abel Symposium 2014 Book, pp. 279–306 (2015)Google Scholar
  109. 109.
    Vaske, C.J., Benz, S.C., Sanborn, J.Z., Earl, D., Szeto, C., Zhu, J., Haussler, D., Stuart, J.M.: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using paradigm. Bioinformatics 26(12), i237–i245 (2010)CrossRefGoogle Scholar
  110. 110.
    Voorman, A., Shojaie, A., Witten, D.: Inference in high dimensions with the penalized score test (2014, preprint). arXiv:1401.2678Google Scholar
  111. 111.
    Wasserman, L., Roeder, K.: High dimensional variable selection. Ann. Stat. 37, 2178–2201 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  112. 112.
    Xu, X., Ghosh, M.: Bayesian variable selection and estimation for group lasso. Bayesian Anal. (2015)Google Scholar
  113. 113.
    Yang, M.: Bayesian variable selection for logistic mixed model with nonparametric random effects. Comput. Stat. Data Anal. 56, 2663–2674 (2012)CrossRefzbMATHGoogle Scholar
  114. 114.
    Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68, 49–67 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  115. 115.
    Zablocki, R.W., Schork, A.J., Levine, R.A., Andreassen, O.A., Dale, A.M., Thompson, W.K.: Covariate-modulated local false discovery rate for genome-wide association studies. Bioinformatics 30(15), 2098–2104 (2014)CrossRefGoogle Scholar
  116. 116.
    Zellner, A.: On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Bayesian Inference and Decision Techniques: Essays in Honor of Bruno De Finetti, Elsevier Science Ltd. vol. 6, pp. 233–243, (1986)Google Scholar
  117. 117.
    Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38, 894–942 (2010)CrossRefzbMATHGoogle Scholar
  118. 118.
    Zhang, C.-H., Zhang, S.S.: Confidence intervals for low dimensional parameters in high dimensional linear models. J. R. Stat. Soc. Ser. B 76, 217–242 (2014)CrossRefGoogle Scholar
  119. 119.
    Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418–1429 (2006)CrossRefzbMATHGoogle Scholar
  120. 120.
    Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67, 301–320 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  121. 121.
    Zou, H., Li, R.: One-step sparse estimates in nonconcave penalized likelihood models (with discussion). Ann. Stat. 36, 1509–1566 (2008)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Arnoldo Frigessi
    • 1
  • Peter Bühlmann
    • 2
  • Ingrid K. Glad
    • 3
  • Sylvia Richardson
    • 4
  • Marina Vannucci
    • 5
  1. 1.Oslo Centre for Biostatistics and EpidemiologyUniversity of OsloOsloNorway
  2. 2.Seminar for StatisticsETH ZürichZürichSwitzerland
  3. 3.Department of MathematicsUniversity of OsloOsloNorway
  4. 4.MRC Biostatistics Unit, Cambridge Institute of Public HealthUniversity of CambridgeCambridgeUK
  5. 5.Department of StatisticsRice UniversityHoustonUSA

Personalised recommendations