Quantitative Trait Loci Mapping in Plants: Concepts and Approaches

Part of the Sustainable Development and Biodiversity book series (SDEB, volume 11)


The narrow genetic base of modern crop cultivars is a serious obstacle to sustain and improve crop productivity due to rapidly occurring vulnerability of genetically uniform cultivars to potentially new biotic and abiotic stresses. Plant germplasm resources, originated from a number of historical genetic events as a response to environmental stresses and selection, are the important reservoirs of natural genetic variations that can be exploited to increase the genetic base of the cultivars. However, many agriculturally important traits such as productivity and quality, tolerance to environmental stresses, and some of forms of disease resistance are quantitative (also called polygenic, continuous, multifactorial, or complex traits) in nature. The genetic variation of a quantitative trait is controlled by the collective effects of numerous genes, known as quantitative trait loci (QTLs). Identification of QTLs of agronomic importance and its utilization in a crop improvement requires mapping of these QTLs in the genome of crop species using molecular markers. This review will focus on the basic concepts and a brief description of existing methodologies for QTL mapping and their merits and demerits including traditional biparental mapping and the advanced linkage disequilibrium (LD)-based association mapping. Examples of some of the recent studies on association mapping in various crop species are provided to demonstrate the merits of high-resolution association mapping approach over traditional mapping methods. This review thus will provide non-expert readers of crop breeding community an opportunity to develop a basic understanding of dissecting and exploiting natural variations for crop improvement.


Linkage map Quantitative trait loci Linkage disequilibrium Association mapping 


  1. Abecasis GR, Cookson W (2000) GOLD—graphical overview of linkage disequilibrium. Bioinformatics 16:182–183PubMedCrossRefGoogle Scholar
  2. Acuña TB, Rebetzke G, He X et al (2014) Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments. Mol Breed 1–12Google Scholar
  3. Agrama HA, Moussa ME (1996) Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91:89–97CrossRefGoogle Scholar
  4. Agrama H, Moussa M, Naser M et al (1999) Mapping of QTL for downy mildew resistance in maize. Theor Appl Genet 99:519–523PubMedCrossRefGoogle Scholar
  5. Agrama H, Eizenga G, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19:341–356CrossRefGoogle Scholar
  6. Aranzana MJ, Kim S, Zhao K et al (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60PubMedPubMedCentralCrossRefGoogle Scholar
  7. Asad MA, Bai B, Lan C et al (2014) Identification of QTL for adult-plant resistance to powdery mildew in Chinese wheat landrace Pingyuan 50. Crop J 2:308–314CrossRefGoogle Scholar
  8. Asins M (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291CrossRefGoogle Scholar
  9. Aulchenko YS, De Koning D-J, Haley C (2007) Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177:577–585PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bao J, Corke H, Sun M (2006) Microsatellites, single nucleotide polymorphisms and a sequence tagged site in starch-synthesizing genes in relation to starch physicochemical properties in nonwaxy rice (Oryza sativa L.). Theor Appl Genet 113:1185–1196PubMedCrossRefGoogle Scholar
  11. Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the forty-ninth annual corn and sorghum industry research conference pp 250–266Google Scholar
  12. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol) 289–300Google Scholar
  13. Bonneau J, Taylor J, Parent B et al (2013) Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theor Appl Genet 126:747–761PubMedCrossRefGoogle Scholar
  14. Borba TCDO, Brondani RPV, Breseghello F et al (2010) Association mapping for yield and grain quality traits in rice (Oryza sativa L.). Genet Mol Biol 33:515–524CrossRefGoogle Scholar
  15. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177PubMedPubMedCentralCrossRefGoogle Scholar
  16. Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  17. Burton AL, Johnson JM, Foerster JM et al (2014) QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor Appl Genet 1–19Google Scholar
  18. Castro A, Tacaliti M, Giménez D et al (2008) Mapping quantitative trait loci for growth responses to exogenously applied stress induced hormones in wheat. Euphytica 164:719–727CrossRefGoogle Scholar
  19. Cattivelli L, Rizza F, Badeck F-W et al (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14CrossRefGoogle Scholar
  20. Cheema J, Ellis TH, Dicks J (2010) THREaD mapper studio: a novel, visual web server for the estimation of genetic linkage maps. Nucl Acids Res 38:188–193CrossRefGoogle Scholar
  21. Collard B, Jahufer M, Brouwer J et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  22. Crossa J, Burgueno J, Dreisigacker S et al (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cui D, Xu C-Y, Tang C-F et al (2013) Genetic structure and association mapping of cold tolerance in improved japonica rice germplasm at the booting stage. Euphytica 193:369–382CrossRefGoogle Scholar
  24. Dang X, Thi TGT, Dong G et al (2014) Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta 239:1309–1319PubMedCrossRefGoogle Scholar
  25. De Alencar Figueiredo L, Sine B, Chantereau J et al (2010) Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theor Appl Genet 121:1171–1185CrossRefGoogle Scholar
  26. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004PubMedCrossRefGoogle Scholar
  27. Ducrocq S, Madur D, Veyrieras J-B et al (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437PubMedPubMedCentralCrossRefGoogle Scholar
  28. Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835PubMedPubMedCentralGoogle Scholar
  29. Flint-Garcia SA, Thornsberry JM, Iv B (2003) Structure of linkage disequilibrium in plants*. Annu Rev Plant Biol 54:357–374PubMedCrossRefGoogle Scholar
  30. Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103:185–190CrossRefGoogle Scholar
  31. Gomez SM, Boopathi NM, Kumar SS et al (2010) Molecular mapping and location of QTLs for drought-resistance traits in indica rice (Oryza sativa L.) lines adapted to target environments. Acta Physiol Plant 32:355–364CrossRefGoogle Scholar
  32. González-Martínez SC, Ersoz E, Brown GR et al (2006) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172:1915–1926PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485PubMedCrossRefGoogle Scholar
  34. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324PubMedCrossRefGoogle Scholar
  35. Hall D, Tegström C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Briefings in functional genomics elp048Google Scholar
  36. Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333PubMedPubMedCentralCrossRefGoogle Scholar
  37. Haseneyer G, Stracke S, Piepho H-P et al (2010) DNA polymorphisms and haplotype patterns of transcription factors involved in barley endosperm development are associated with key agronomic traits. BMC Plant Biol 10:5PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hoisington D, Khairallah M, Reeves T et al (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci 96:5937–5943PubMedPubMedCentralCrossRefGoogle Scholar
  39. Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J. 2012 0(7):826-39Google Scholar
  40. Huang X-Q, Brûlé-Babel A (2012) Sequence diversity, haplotype analysis, association mapping and functional marker development in the waxy and starch synthase IIa genes for grain-yield-related traits in hexaploid wheat (Triticum aestivum L.). Mol Breed 30:627–645CrossRefGoogle Scholar
  41. Huang J, Zhang J, Li W et al (2013) Genome-wide association analysis of ten chilling tolerance indices at the germination and seedling stages in maize. J Integr Plant Biol 55:735–744PubMedCrossRefGoogle Scholar
  42. Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922PubMedCrossRefGoogle Scholar
  43. Ingvarsson PK, Garcia MV, Luquez V et al (2008) Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics 178:2217–2226PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jaiswal V, Mir R, Mohan A et al (2012) Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica 188:89–102CrossRefGoogle Scholar
  45. Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedPubMedCentralGoogle Scholar
  46. Jia L, Yan W, Zhu C et al (2012) Allelic analysis of sheath blight resistance with association mapping in rice. PLoS ONE 7:e32703PubMedPubMedCentralCrossRefGoogle Scholar
  47. Joukhadar R, El-Bouhssini M, Jighly A et al (2013) Genome-wide association mapping for five major pest resistances in wheat. Mol Breed 32:943–960CrossRefGoogle Scholar
  48. Kover PX, Valdar W, Trakalo J et al (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551PubMedPubMedCentralCrossRefGoogle Scholar
  49. Krill AM, Kirst M, Kochian LV et al (2010) Association and linkage analysis of aluminum tolerance genes in maize. PLoS ONE 5:e9958PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kulwal P, Kumar N, Gaur A et al (2005) Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet 111:1052–1059PubMedCrossRefGoogle Scholar
  51. Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412PubMedPubMedCentralGoogle Scholar
  52. Lanceras JC, Pantuwan G, Jongdee B et al (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lander ES, Green P, Abrahamson J et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  54. Li X, Wang Z, Gao S et al (2008) Analysis of QTL for resistance to head smut (Sporisorium reiliana) in maize. Field crops Res 106:148–155CrossRefGoogle Scholar
  55. Li Q, Li L, Yang X et al (2010a) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143PubMedPubMedCentralCrossRefGoogle Scholar
  56. Li Q, Yang X, Bai G et al (2010b) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763PubMedCrossRefGoogle Scholar
  57. Li X, Yan W, Agrama H et al (2012) Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS ONE 7:e29350PubMedPubMedCentralCrossRefGoogle Scholar
  58. Li H, Peng Z, Yang X et al (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50PubMedCrossRefGoogle Scholar
  59. Lincoln S, Daly M. Lander E (1993) Constructing genetic linkage maps with MAPMAKER/EXP. Version 3.0. Whitehead Institute for Biomedical Research Technical Report, 3rd ednGoogle Scholar
  60. Liu K, Muse SV (2005) Powermarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  61. Liu L, Mu P, Li X et al (2008) Localization of QTL for basal root thickness in japonica rice and effect of marker-assisted selection for a major QTL. Euphytica 164:729–737CrossRefGoogle Scholar
  62. Liu Y, Subhash C, Yan J et al (2011) Maize leaf temperature responses to drought: thermal imaging and quantitative trait loci (QTL) mapping. Environ Exp Bot 71:158–165CrossRefGoogle Scholar
  63. Liu S, Yang X, Zhang D et al (2014) Genome-wide association analysis identified SNPs closely linked to a gene resistant to Soil-borne wheat mosaic virus. Theor Appl Genet 127:1039–1047PubMedCrossRefGoogle Scholar
  64. Lou J, Chen L, Yue G et al (2009) QTL mapping of grain quality traits in rice. J Cereal Sci 50:145–151CrossRefGoogle Scholar
  65. Ma X-F, Ross K, Gustafson J (2001) Physical mapping of restriction fragment length polymorphism (RFLP) markers in homoeologous groups 1 and 3 chromosomes of wheat by in situ hybridization. Genome 44:401–412PubMedCrossRefGoogle Scholar
  66. Maccaferri M, Sanguineti MC, Demontis A et al (2010) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot erq287Google Scholar
  67. Manly KF, Cudmore RH Jr, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932PubMedCrossRefGoogle Scholar
  68. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mcmullen MD, Kresovich S, Villeda HS et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740PubMedCrossRefGoogle Scholar
  70. Moreira JUV, Bento DAV, De Souza AP et al (2009) QTL mapping for reaction to phaeosphaeria leaf spot in a tropical maize population. Theor Appl Genet 119:1361–1369PubMedCrossRefGoogle Scholar
  71. Nandi S, Subudhi P, Senadhira D et al (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet MGG 255:1–8PubMedCrossRefGoogle Scholar
  72. Navakode S, Weidner A, Lohwasser U et al (2009) Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166:283–290CrossRefGoogle Scholar
  73. Neale DB, Ingvarsson PK (2008) Population, quantitative and comparative genomics of adaptation in forest trees. Curr Opin Plant Biol 11:149–155PubMedCrossRefGoogle Scholar
  74. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330PubMedCrossRefGoogle Scholar
  75. Ni J, Wu P, Senadhira D et al (1998) Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:1361–1369CrossRefGoogle Scholar
  76. Paliwal R, Röder MS, Kumar U et al (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125:561–575PubMedCrossRefGoogle Scholar
  77. Park KJ, Sa KJ, Kim BW et al (2014) Genetic mapping and QTL analysis for yield and agronomic traits with an F2: 3 population derived from a waxy corn× sweet corn cross. Genes Genom 36:179–189CrossRefGoogle Scholar
  78. Paterson AH (1996) Making genetic maps. Genome mapping in plants (biotechnology intelligence unit) 23–39Google Scholar
  79. Peng J, Bai Y, Haley S et al (2009) Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica 135:95–122PubMedCrossRefGoogle Scholar
  80. Perrier X, Jacquemoud-Collet J (2006) DARwin softwareGoogle Scholar
  81. Phumichai C, Chunwongse J, Jampatong S et al (2012) Detection and integration of gene mapping of downy mildew resistance in maize inbred lines though linkage and association. Euphytica 187:369–379CrossRefGoogle Scholar
  82. Presterl T, Ouzunova M, Schmidt W et al (2007) Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet 114:1059–1070PubMedCrossRefGoogle Scholar
  83. Price AH (2006) Believe it or not, QTLs are accurate! Trends in Plant Science 11:213–216Google Scholar
  84. Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909PubMedCrossRefGoogle Scholar
  85. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  86. Quarrie S, Gulli M, Calestani C et al (1994) Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet 89:794–800PubMedCrossRefGoogle Scholar
  87. Ray J, Yu L, Mccouch S et al (1996) Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet 92:627–636PubMedCrossRefGoogle Scholar
  88. Remington DL, Thornsberry JM, Matsuoka Y et al (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci 98:11479–11484PubMedPubMedCentralCrossRefGoogle Scholar
  89. Risch N (1992) Genetic linkage: interpreting LOD scores. Science 255:803–804PubMedCrossRefGoogle Scholar
  90. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517Google Scholar
  91. Rockman MV (2008) Reverse engineering the genotype–phenotype map with natural genetic variation. Nature 456:738–744PubMedCrossRefGoogle Scholar
  92. Rostoks N, Ramsay L, Mackenzie K et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci 103:18656–18661PubMedPubMedCentralCrossRefGoogle Scholar
  93. Rousset M, Bonnin I, Remoué C et al (2011) Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:907–926PubMedCrossRefGoogle Scholar
  94. Salvi S, Sponza G, Morgante M et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci 104:11376–11381PubMedPubMedCentralCrossRefGoogle Scholar
  95. Santra D, Chen X, Santra M et al (2008) Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar ‘Stephens’. Theor Appl Genet 117:793–802PubMedCrossRefGoogle Scholar
  96. Sehgal D, Yadav R (2009) Molecular markers based approaches for drought tolerance. In: Molecular techniques in crop improvement. Springer, Berlin, pp 207–230Google Scholar
  97. Setter TL, Yan J, Warburton M et al (2010) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot erq308Google Scholar
  98. Shi L, Lv X, Weng J et al (2014) Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea may L.). The Crop J 2:132–143CrossRefGoogle Scholar
  99. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: join map. Plant J 3:739–744CrossRefGoogle Scholar
  100. Su Z, Hao C, Wang L et al (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223PubMedCrossRefGoogle Scholar
  101. Tan Y, Sun M, Xing Y et al (2001) Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet 103:1037–1045CrossRefGoogle Scholar
  102. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233PubMedCrossRefGoogle Scholar
  103. Tanksley S, Ganal M, Prince J et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedPubMedCentralGoogle Scholar
  104. Tian Y, Zhang H, Xu P et al (2014) Genetic mapping of a QTL controlling leaf width and grain number in rice. Euphytica 1–11Google Scholar
  105. Utz H, Melchinger A (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2:1–5Google Scholar
  106. Van Inghelandt D, Melchinger AE, Martinant J-P et al (2012) Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biol 12:56PubMedPubMedCentralCrossRefGoogle Scholar
  107. Vanniarajan C, Vinod K, Pereira A (2012) Molecular evaluation of genetic diversity and association studies in rice (Oryza sativa L.). J Genet 91:9–19PubMedCrossRefGoogle Scholar
  108. Vijayalakshmi K, Fritz AK, Paulsen GM et al (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175CrossRefGoogle Scholar
  109. Wang A-Y, Li Y, Zhang C-Q (2012a) QTL mapping for stay-green in maize (Zea mays). Can J Plant Sci 92:249–256CrossRefGoogle Scholar
  110. Wang M, Yan J, Zhao J et al (2012b) Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci 196:125–131PubMedCrossRefGoogle Scholar
  111. Wen W, Mei H, Feng F et al (2009) Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice (Oryza sativa L.). Theor Appl Genet 119:459–470PubMedCrossRefGoogle Scholar
  112. Weng J, Xie C, Hao Z et al (2011) Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS ONE 6:e29229PubMedPubMedCentralCrossRefGoogle Scholar
  113. Whitt SR, Buckler Iv ES (2003) Using natural allelic diversity to evaluate gene function. In: Plant functional genomics. Springer, Berlin, pp 123–139Google Scholar
  114. Wilson LM, Whitt SR, Ibáñez AM et al (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell Online 16:2719–2733CrossRefGoogle Scholar
  115. Xu F-F, Tang F-F, Shao Y-F et al (2014) Genotype× environment interactions for agronomic traits of rice revealed by association mapping. Rice Sci 21:133–141CrossRefGoogle Scholar
  116. Xue Y, Warburton ML, Sawkins M et al (2013) Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor Appl Genet 126:2587–2596PubMedCrossRefGoogle Scholar
  117. Yan WG, Li Y, Agrama HA et al (2009) Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol Breed 24:277–292PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yan J, Kandianis CB, Harjes CE et al (2010) Rare genetic variation at Zea mays crtRB1 increases [beta]-carotene in maize grain. Nat Genet 42:322–327PubMedCrossRefGoogle Scholar
  119. Yang N, Lu Y, Yang X et al (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10:e1004573PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yao H, Zhou Q, Li J et al (2002) Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc Natl Acad Sci 99:6157–6162PubMedPubMedCentralCrossRefGoogle Scholar
  121. Yoshida T, Nishida H, Zhu J et al (2010) Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Genet 120:543–552PubMedCrossRefGoogle Scholar
  122. Young ND (1994) Constructing a plant genetic linkage map with DNA markers. In: DNA-based markers in plants. Springer, Berlin, pp 39–57Google Scholar
  123. Young N (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501PubMedCrossRefGoogle Scholar
  124. Yu J, Pressoir G, Briggs WH et al (2005) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  125. Yu L-X, Morgounov A, Wanyera R et al (2012) Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. Theor Appl Genet 125:749–758PubMedCrossRefGoogle Scholar
  126. Zegeye H, Rasheed A, Makdis F et al (2014) Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS ONE 9:e105593PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedPubMedCentralGoogle Scholar
  128. Zhang J, Hao C, Ren Q et al (2011) Association mapping of dynamic developmental plant height in common wheat. Planta 234:891–902PubMedCrossRefGoogle Scholar
  129. Zhang Y, Xu L, Fan X et al (2012) QTL mapping of resistance to gray leaf spot in maize. Theor Appl Genet 125:1797–1808PubMedCrossRefGoogle Scholar
  130. Zhang X, Tang B, Yu F et al (2013) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Rep 31:594–606CrossRefGoogle Scholar
  131. Zheng P, Allen WB, Roesler K et al (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372PubMedCrossRefGoogle Scholar
  132. Zhu C, Yu J (2009) Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genetics 182:875–888PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhu C, Gore M, Buckler ES et al (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.International Maize and Wheat Improvement Center (CIMMYT)TexcocoMexico
  2. 2.Department of Molecular Biology and BiotechnologyChaudhary Charan Singh Haryana Agricultural University (CCSHAU)HisarIndia
  3. 3.Department of BotanyHansRaj College, University of DelhiDelhiIndia

Personalised recommendations