Advertisement

A System for Political Districting in the State of Mexico

  • Eric Alfredo Rincón GarcíaEmail author
  • Miguel Ángel Gutiérrez Andrade
  • Sergio Gerardo de-los-Cobos-Silva
  • Antonin Ponsich
  • Roman Anselmo Mora-Gutiérrez
  • Pedro Lara-Velázquez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9413)

Abstract

Districting is the redrawing of the boundaries of legislative districts for electoral purposes in such a way that the Federal or state requirements, such as contiguity, population equality, and compactness, are fulfilled. The resulting optimization problem involves the former requirement as a hard constraint while the other two are considered as conflicting objective functions. The solution technique used for many years by the Mexican Federal Electoral Institute was an algorithm based on Simulated Annealing. In this article, we present the system proposed for the electoral districting process in the state of Mexico. This system included, a geographic tool to visualize and edit districting plans, and for first time in Mexico, the use of an Artificial Bee Colony based algorithm that automatically creates redistricting plans.

Keywords

Districting system Simulated annealing Artificial Bee Colony 

References

  1. 1.
    Ardanaz, M., Leiras, M., Tommasi, M.: The politics of federalism in Argentina and its implications for governance and accountability. World Dev. 53, 26–45 (2014)CrossRefGoogle Scholar
  2. 2.
    Baçao, F., Lobo, V., Painho, M.: Applying genetic algorithms to zone design. Soft Comput. 9, 341–348 (2005)CrossRefGoogle Scholar
  3. 3.
    Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Studies in Computational Intelligence, vol. 197. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Bozkaya, B., Erkut, E., Laporte, G.: A tabu search heuristic and adaptive memory procedure for political districting. Eur. J. Oper. Res. 144, 12–26 (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chung-I, C.: A knowledge-based evolution algorithm approach to political districting problem. Comput. Phys. Commun. 182(1), 209–212 (2011)CrossRefGoogle Scholar
  6. 6.
    Caro, F., Shirabe, T., Guignard, M., Weintraub, A.: School redistricting: embedding GIS tools with integer programming. J. Oper. Res. Soc. 55, 836–849 (2004)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dell’Amico, S., Wang, S., Batta, R., Rump, C.: A simulated annealing approach to police district design. Comput. Oper. Res. 29, 667–684 (2002)CrossRefGoogle Scholar
  8. 8.
    DesJardins, M., Bulka, B., Carr, R., Jordan, E., Rheingans, P.: Heuristic search and information visualization methods for school redistricting. AI Mag. 28(3), 59–72 (2006)Google Scholar
  9. 9.
    Duque, J.C., Ramos, R., Suriach, J.: Supervised regionalization methods: a survey. Int. Reg. Sci. Rev. 30(3), 195–220 (2007)CrossRefGoogle Scholar
  10. 10.
    Forest, B.: Redistricting and the elusive ideals of representation. Polit. Geogr. 32, 15–17 (2013)CrossRefGoogle Scholar
  11. 11.
    Garfinkel, R.S., Nemhauser, G.L.: Optimal political districting by implicit enumeration techniques. Manag. Sci. 16, 495–508 (1970)CrossRefGoogle Scholar
  12. 12.
    Gilbert, K.C., Holmes, D.D., Rosenthal, R.E.: A multiobjective discrete optimization model for land allocation. Manag. Sci. 31, 1509–1522 (1985)CrossRefGoogle Scholar
  13. 13.
    Andrade, M.A.G., García, E.A.R.: Redistricting by square cells. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds.) MICAI 2009. LNCS, vol. 5845, pp. 669–679. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  14. 14.
    Hess, S.W., Weaver, J.B., Siegfeldt, H.J., Whelan, J.N., Zitlau, P.A.: Nonpartisan political redistricting by computer. Oper. Res. 13(6), 998–1006 (1965)CrossRefGoogle Scholar
  15. 15.
    Kalcsics, J., Nickel, S., Schrder, M.: Towards a unified territorial design approach: applications, algorithms and GIS integration. Top 13(1), 1–74 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)CrossRefGoogle Scholar
  18. 18.
    Kirkpatrick, S., Gellat, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Macmillan, W.: Redistricting in a GIS environment: an optimisation algorithm using switching-points. J. Geogr. Syst. 3, 167–180 (2001)CrossRefGoogle Scholar
  20. 20.
    Ricca, F., Simeone, B.: Local search algorithms for political districting. Eur. J. Oper. Res. 189(3), 1409–1426 (2008)zbMATHCrossRefGoogle Scholar
  21. 21.
    Ricca, F., Scozzari, A., Simeone, B.: Political districting: from classical models to recent approaches. J. Oper. Res. 204(1), 271–299 (2011)Google Scholar
  22. 22.
    Rincón-García, E.A., Gutiérrez-Andrade, M.A., de-los-Cobos-Silva, S.G., Lara-Velázquez, P., Mora-Gutiérrez, R.A., Ponsich, A.: A discrete particle swarm optimization algorithm for designing electoral zones. In: Methods for decision making in an uncertain environment, pp. 174–197. World Scientific Proceedings Series on Computer Engineering and Information Science, Reus (2012)Google Scholar
  23. 23.
    Shirabe, T.: A model of contiguity for spatial unit allocation. Geogr. Anal. 37, 2–16 (2005)CrossRefGoogle Scholar
  24. 24.
    Shirabe, T.: Prescriptive modeling with map algebra for multi-zone allocation with size constraints. Comput. Environ. Urban Syst. 36, 456–469 (2012)CrossRefGoogle Scholar
  25. 25.
    Shortt, N.K., Moore, A., Coombes, M., Wymer, C.: Defining regions for locality health care planning: a multidimensional approach. Soc. Sci. Med. 60, 2715–2727 (2005)CrossRefGoogle Scholar
  26. 26.
    Tavares-Pereira, F., Rui, J., Mousseau, V., Roy, B.: Multiple criteria districting problems: the public transportation network pricing system of the Paris region. Ann. Oper. Res. 154, 69–92 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Vickrey, W.: On the prevention of gerrymandering. Polit. Sci. Q. 76(1), 105–110 (1961)CrossRefGoogle Scholar
  28. 28.
    Zoltners, A.A., Sinha, P.: Sales territory design: thirty years of modeling and implementation. Mark. Sci. 24(3), 313–331 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eric Alfredo Rincón García
    • 1
    Email author
  • Miguel Ángel Gutiérrez Andrade
    • 2
  • Sergio Gerardo de-los-Cobos-Silva
    • 2
  • Antonin Ponsich
    • 1
  • Roman Anselmo Mora-Gutiérrez
    • 1
  • Pedro Lara-Velázquez
    • 2
  1. 1.Dpto. de SistemasUniversidad Autónoma MetropolitanaMexico D.F.Mexico
  2. 2.Dpto. de Ing. EléctricaUniversidad Autónoma MetropolitanaMexico D.F.Mexico

Personalised recommendations