Advertisement

A Social Semantic Approach to Adaptive Query Expansion

  • Claudio Biancalana
  • Fabio Gasparetti
  • Alessandro Micarelli
  • Giuseppe SansonettiEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 226)

Abstract

Classic query expansion approaches are based on the use of two-dimensional co-occurrence matrices. In this paper, we propose the adoption of three-dimensional matrices, where the added dimension is represented by semantic classes (i.e., categories comprising all the terms that share a semantic property) related to the folksonomy extracted from social bookmarking services, such as Delicious and StumbleUpon. The results of an in-depth experimental evaluation performed on real users show that our approach outperforms traditional techniques, so confirming the validity and usefulness of the categorization of the user needs and preferences in semantic classes.

Keywords

Query expansion Social bookmarking services Personalization 

References

  1. 1.
    Abouenour, L., Bouzouba, K., Rosso, P.: An evaluated semantic query expansion and structure-based approach for enhancing arabic question answering. Int. J. Inf. Commun. Technol. 3(3), 37–51 (2010)Google Scholar
  2. 2.
    Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press / Addison-Wesley, Boston, MA, USA (1999)Google Scholar
  3. 3.
    Bai, J., Song, D., Bruza P., Nie, J.Y., Cao, G.: Query expansion using term relationships in language models for information retrieval. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 688–695 (2005)Google Scholar
  4. 4.
    Biancalana, C., Flamini, A., Gasparetti, F., Micarelli, A., Millevolte, S., Sansonetti, G.: Enhancing traditional local search recommendations with context-awareness. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 335–340. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  5. 5.
    Biancalana, C., Gasparetti, F., Micarelli, A., Sansonetti, G.: Enhancing query expansion through folksonomies and semantic classes. In: 2012 International Conference on Privacy, Security, Risk and Trust (PASSAT), International Conference on Social Computing (SocialCom), pp. 611–616, September 2012Google Scholar
  6. 6.
    Biancalana, C., Gasparetti, F., Micarelli, A., Sansonetti, G.: An approach to social recommendation for context-aware mobile services. ACM Trans. Intell. Syst. Technol. 4(1), 10:1–10:31 (2013)CrossRefGoogle Scholar
  7. 7.
    Biancalana, C., Gasparetti, F., Micarelli, A., Sansonetti, G.: Social semantic query expansion. ACM Trans. Intell. Syst. Technol. 4(4), 60:1–60:43 (2013)CrossRefGoogle Scholar
  8. 8.
    Biancalana, C., Lapolla, A., Micarelli, A.: Personalized web search using correlation matrix for query expansion. In: Cordeiro, J., Hammoudi, S., Filipe, J. (eds.) Web Information Systems and Technologies. LNBIP, vol. 18, pp. 186–198. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Biancalana, C., Micarelli, A.: Social tagging in query expansion: a new way for personalized web search. In: CSE (4), pp. 1060–1065 (2009)Google Scholar
  10. 10.
    Bilotti, M.W., Katz, B., Lin, J.: What works better for question answering: stemming or morphological query expansion? In: Proceedings of the Information Retrieval for Question Answering (IR4QA) Workshop at SIGIR 2004, Sheffield (2004)Google Scholar
  11. 11.
    Burgess, C., Lund, K.: Hyperspace analog to language (hal): a general model of semantic representation. In: Proceedings of the Annual Neeting of the Psychonomic Society (1995)Google Scholar
  12. 12.
    Cao, G., Nie, J.-Y., Gao, J., Robertson, S.:Selecting good expansion terms for pseudo-relevance feedback. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008, pp. 243–250, New York (2008)Google Scholar
  13. 13.
    Carman, M.J., Baillie, M., Gwadera, R., Crestani, F.: A statistical comparison of tag and query logs. In: Proceedings of the 32nd International ACM SIGIR Conference onResearch and Development in Information Retrieval, SIGIR 2009, pp. 123–130, New York (2009)Google Scholar
  14. 14.
    Carpineto, C., Romano, G.: A survey of automatic query expansion in information retrieval. ACM Comput. Surv. 44(1), 1:1–1:50 (2012)CrossRefzbMATHGoogle Scholar
  15. 15.
    Cui, H., Wen, J.-R., Nie, J.-Y., Ma, W.-Y.: Query expansion by mining user logs. IEEE Trans. Knowl. Data Eng. 15(4), 829–839 (2003)CrossRefGoogle Scholar
  16. 16.
    Micarelli, A.G.F., Sansonetti, G.: Exploiting web browsing activities for user needs identification. In: Proceedings of the 2014 International Conference on Computational Science and Computational Intelligence (CSCI 2014), IEEE Computer Society, Conference Publishing Services, March 2014Google Scholar
  17. 17.
    Jansen, B.J., Spink, A., Pedersen, J.: A temporal comparison of altavista web searching: research articles. J. Am. Soc. Inf. Sci. Technol. 56(6), 559–570 (2005)CrossRefGoogle Scholar
  18. 18.
    Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and analysis of user queries on the web. Inf. Process. Manage. 36(2), 207–227 (2000)CrossRefGoogle Scholar
  19. 19.
    Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, USA, pp. 41–48, (2000)Google Scholar
  20. 20.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)CrossRefGoogle Scholar
  21. 21.
    Kim, M.-C., Choi, K.-S.: A comparison of collocation-based similarity measures in query expansion. Inf. Process. Manage. 35(1), 19–30 (1999)CrossRefGoogle Scholar
  22. 22.
    Nanba, H.: Query expansion using an automatically constructed thesaurus. In: Kando, N., Evans, D.K. (eds) Proceedings of the Sixth NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering, and Cross-Lingual Information Access, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101–8430, Japan, pp. 414–419, May 2007Google Scholar
  23. 23.
    Niles, I., Pease, A.: Linking lexicons and ontologies: mapping wordnet to the suggested upper merged ontology. In: Proceedings of the IEEE International Conference on Information and Knowledge Engineering, Las Vegas, Nevada, USA, pp. 412–416, (2003)Google Scholar
  24. 24.
    Peat, H.J., Willett, P.: The limitations of term co-occurrence data for query expansion in document retrieval systems. J. American Soc. Inf. Sci. 42, 378–383 (1991)CrossRefGoogle Scholar
  25. 25.
    Xu, Y., Jones, G.J.F., Wang, B.: Query dependent pseudo-relevance feedback based on wikipedia. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, pp. 59–66, New York (2009)Google Scholar
  26. 26.
    Eli Zamir, O., Korn, J.L., Fikes, A.B., Lawrence, S.R.: Us patent application #0050240580: Personalization of placed content ordering in search results, July 2004Google Scholar
  27. 27.
    Zhou, D., Lawless, S., Wade, V.: Improving search via personalized query expansion using social media. Inf. Retr. 15(3–4), 218–242 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Claudio Biancalana
    • 1
  • Fabio Gasparetti
    • 1
  • Alessandro Micarelli
    • 1
  • Giuseppe Sansonetti
    • 1
    Email author
  1. 1.Department of Engineering, Artificial Intelligence LaboratoryRoma Tre UniversityRomeItaly

Personalised recommendations