Applications of Coherent Potential Approximation to HEAs

  • Fuyang Tian
  • Yang Wang
  • Douglas L. Irving
  • Levente Vitos


This chapter details the coherent potential approximation (CPA) to describe the chemically and magnetically disordered phases for systems of arbitrary number of components. Two widely used CPA implementations, namely, the exact muffin-tin orbitals (EMTO) and the Korringa–Kohn–Rostoker (KKR) methods, are briefly reviewed. Applications to predict lattice stability, electronic and magnetic structure, elasticity properties, and stacking fault energies of single-phase HEAs are presented.


Coherent potential application (CPA) Korringa–Kohn–Rostoker (KKR) Exact muffin-tin orbitals (EMTO) Density functional theory (DFT) Magnetism Electronic structure Elasticity Elastic consents Stacking fault energy Disordered solid solution High-entropy alloys (HEAs) 



Work were supported by the National Natural Science Foundation of China (NSFC) with the Grant No. 51401014, the National Basic Research Development Program of China with No. 2011CB606401, the Swedish Research Council, the European Research Council, and the Hungarian Scientific Research Fund (research project OTKA 84078 and 109570).


  1. 1.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871CrossRefGoogle Scholar
  2. 2.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138CrossRefGoogle Scholar
  3. 3.
    Soven P (1967) Coherent-potential model of substitutional disordered alloys. Phys Rev 156(3):809CrossRefGoogle Scholar
  4. 4.
    Taylor DW (1967) Vibrational properties of imperfect crystals with large defect concentrations. Phys Rev 156(3):1017CrossRefGoogle Scholar
  5. 5.
    Gyorffy BL (1972) Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys. Phys Rev B 5(6)Google Scholar
  6. 6.
    Korringa J (1947) On the calculation of the energy of a Bloch wave in a metal. Phys Chem Chem Phys 13(6–7):392–400, doi: Google Scholar
  7. 7.
    Kohn W, Rostoker N (1954) Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys Rev 94(5):1111–1120CrossRefGoogle Scholar
  8. 8.
    Skriver HL (1984) The LMTO method. Springer, Berlin/Heidelberg/New York/TokyoCrossRefGoogle Scholar
  9. 9.
    Andersen OK (1975) Linear methods in band theory. Phys Rev B 12(8):3060–3083CrossRefGoogle Scholar
  10. 10.
    Vitos L (2001) Total-energy method based on the exact muffin-tin orbitals theory. Phys Rev B 64(1):014107CrossRefGoogle Scholar
  11. 11.
    Vitos L, Abrikosov IA, Johansson B (2001) Anisotropic lattice distortions in random alloys from first-principles theory. Phys Rev Lett 87(15):156401CrossRefGoogle Scholar
  12. 12.
    Vitos L (2007) The EMTO Method and Applications in Computational Quantum Mechanics for Materials Engineers (Springer-Verlag, London)Google Scholar
  13. 13.
    Gyorffy BL, Stocks GM (1983) Concentration waves and fermi surfaces in random metallic alloys. Phys Rev Lett 50(5):374–377CrossRefGoogle Scholar
  14. 14.
    Zunger A, Wei SH, Ferreira L, Bernard J (1990) Special quasirandom structures. Phys Rev Lett 65(3):353–356. doi: 10.1103/PhysRevLett.65.353 CrossRefGoogle Scholar
  15. 15.
    Zaddach AJ, Niu C, Koch CC, Irving DL (2013) Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65(12):1780–1789. doi: 10.1007/s11837-013-0771-4 CrossRefGoogle Scholar
  16. 16.
    Tian F, Varga L, Chen N, Delczeg L, Vitos L (2013) Ab initio investigation of high-entropy alloys of 3d elements. Physical Review B 87(7); 075144–075151. doi: 10.1103/PhysRevB.87.075144
  17. 17.
    Tian F, Delczeg L, Chen N, Varga LK, Shen J, Vitos L (2013) Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Physical Review B 88(8); 085128–085132. doi: 10.1103/PhysRevB.88.085128
  18. 18.
    Tian F, Varga LK, Chen N, Shen J, Vitos L (2014) Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J Alloys Compd 599:19–25. doi: 10.1016/j.jallcom.2014.01.237 CrossRefGoogle Scholar
  19. 19.
    Pinski FJ, Staunton J, Gyorffy BL, Johnson DD, Stocks GM (1986) Ferromagnetism versus antiferromagnetism in face-centered-cubic iron. Phys Rev Lett 56(19):2096–2099CrossRefGoogle Scholar
  20. 20.
    Lucas MS, Wilks GB, Mauger L, Muñoz JA, Senkov ON, Michel E, Horwath J, Semiatin SL, Stone MB, Abernathy DL, Karapetrova E (2012) Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl Phys Lett 100(25):251907. doi: 10.1063/1.4730327 CrossRefGoogle Scholar
  21. 21.
    Delczeg-Czirjak EK, Nurmi E, Kokko K, Vitos L (2011) Effect of long-range order on elastic properties of Pd0.5Ag0.5 alloy from first principles. Phys Rev B 84(9); 094205–094210. doi: 10.1103/PhysRevB.84.094205
  22. 22.
    Lucas MS, Mauger L, Muñoz JA, Xiao Y, Sheets AO, Semiatin SL, Horwath J, Turgut Z (2011) Magnetic and vibrational properties of high-entropy alloys. J Appl Phys 109(7):07E307. doi: 10.1063/1.3538936 CrossRefGoogle Scholar
  23. 23.
    Shun T-T, Hung C-H, Lee C-F (2010) Formation of ordered/disordered nanoparticles in FCC high entropy alloys. J Alloys Compd 493(1–2):105–109, doi: CrossRefGoogle Scholar
  24. 24.
    Wang XF, Zhang Y, Qiao Y, Chen GL (2007) Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15(3):357–362. doi: 10.1016/j.intermet.2006.08.005 CrossRefGoogle Scholar
  25. 25.
    Zhang KB, Fu ZY, Zhang JY, Wang WM, Wang H, Wang YC, Zhang QJ, Shi J (2009) Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater Sci Eng A 508(1–2):214–219. doi: 10.1016/j.msea.2008.12.053 CrossRefGoogle Scholar
  26. 26.
    Wu Y, Liu WH, Wang XL, Ma D, Stoica AD, Nieh TG, He ZB, Lu ZP (2014) In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl Phys Lett 104(5):051910. doi: 10.1063/1.4863748 CrossRefGoogle Scholar
  27. 27.
    Zhang K, Fu Z (2012) Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics 22:24–32. doi: 10.1016/j.intermet.2011.10.010 CrossRefGoogle Scholar
  28. 28.
    Vitos L, Korzhavyi PA, Johansson B (2003) Stainless steel optimization from quantum mechanical calculations. Nat Mater 2(4)Google Scholar
  29. 29.
    Kao Y-F, Chen T-J, Chen S-K, Yeh J-W (2009) Microstructure and mechanical property of as-cast, −homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J Alloys Compd 488(1):57–64. doi: 10.1016/j.jallcom.2009.08.090 CrossRefGoogle Scholar
  30. 30.
    Chou H-P, Chang Y-S, Chen S-K, Yeh J-W (2009) Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater Sci Eng B 163(3):184–189. doi: 10.1016/j.mseb.2009.05.024 CrossRefGoogle Scholar
  31. 31.
    Wang W-R, Wang W-L, Wang S-C, Tsai Y-C, Lai C-H, Yeh J-W (2012) Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26:44–51. doi: 10.1016/j.intermet.2012.03.005 CrossRefGoogle Scholar
  32. 32.
    Guo S, Ng C, Lu J, Liu CT (2011) Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys 109(10):103505. doi: 10.1063/1.3587228 CrossRefGoogle Scholar
  33. 33.
    Gu XJ, McDermott AG, Poon SJ, Shiflet GJ (2006) Critical Poisson’s ratio for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel. Appl Phys Lett 88(21):211905. doi: 10.1063/1.2206149 CrossRefGoogle Scholar
  34. 34.
    Zhou YJ, Zhang Y, Wang YL, Chen GL (2007) Solid solution alloys of AlCoCrFeNiTi[sub x] with excellent room-temperature mechanical properties. Appl Phys Lett 90(18):181904. doi: 10.1063/1.2734517 CrossRefGoogle Scholar
  35. 35.
    Senkov ON, Senkova SV, Woodward C, Miracle DB (2013) Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis. Acta Mater 61(5):1545–1557. doi: 10.1016/j.actamat.2012.11.032 CrossRefGoogle Scholar
  36. 36.
    Massalski TB, Okamoto H, Subramanian PR, Kacprazak L (1990) Binary alloy phase diagram, 2nd edn. ASM International, Materials ParkGoogle Scholar
  37. 37.
    Wang K, Reeber RR (1998) The role of defects on thermophysical properties: thermal expansion of V, Nb, Ta, Mo and W. Mater Sci Eng Struct Mater Prop Microstruct Process 23:101–137Google Scholar
  38. 38.
    Ramos de Debiaggi S, de Koning M, Monti AM (2006) Theoretical study of the thermodynamic and kinetic properties of self-interstitials in aluminum and nickel. Phys Rev B 73(10):104103CrossRefGoogle Scholar
  39. 39.
    Li T, Morris JW, Nagasako N, Kuramoto S, Chrzan DC (2007) “Ideal” engineering alloys. Phys Rev Lett 98(10):105503CrossRefGoogle Scholar
  40. 40.
    Fazakas É, Zadorozhnyy V, Varga LK, Inoue A, Louzguine-Luzgin DV, Tian F, Vitos L (2014) Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys. Int J Refract Met Hard Mater 47:131–138. doi: 10.1016/j.ijrmhm.2014.07.009 CrossRefGoogle Scholar
  41. 41.
    Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31CrossRefGoogle Scholar
  42. 42.
    Alexander LE, Klug HP (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New YorkGoogle Scholar
  43. 43.
    Leoni M, Confente T, Scardi P (2006) PM2K: a flexible program implementing whole powder pattern modelling. Z Kristallogr Suppl 23:249–254CrossRefGoogle Scholar
  44. 44.
    Denanot M, Villain J (1971) The stacking fault energy in Cu‐Al‐Zn alloys. Physica Status Solidi (a) 8(2):K125–K127CrossRefGoogle Scholar
  45. 45.
    Schramm R, Reed R (1975) Stacking fault energies of seven commercial austenitic stainless steels. Metallurg Transact A 6(7):1345–1351CrossRefGoogle Scholar
  46. 46.
    Gong Y, Wen C, Li Y, Wu X, Cheng L, Han X, Zhu X (2013) Simultaneously enhanced strength and ductility of Cu-xGe alloys through manipulating the stacking fault energy (SFE). Mater Sci Eng A 569:144–149CrossRefGoogle Scholar
  47. 47.
    Faulkner JS, Stocks GM (1980) Calculating properties with the coherent-potential approximation. Phys Rev B 21(8):3222–3244CrossRefGoogle Scholar
  48. 48.
    Rusanu A, Stocks GM, Wang Y, Faulkner JS (2011) Green's functions in full-potential multiple-scattering theory. Phys Rev B 84(3):035102CrossRefGoogle Scholar
  49. 49.
    Gyorffy BL, Stott MJ (1973) Theory of soft X-ray emission from alloys. In: Fabian DJ, Watson LM (eds) Proceedings of the international conference on band structure and spectroscopy of metals and alloys. Academic, New YorkGoogle Scholar
  50. 50.
    Mills R, Gray LJ, Kaplan T (1983) Analytic approximation for random muffin-tin alloys. Phys Rev B 27(6):3252–3262CrossRefGoogle Scholar
  51. 51.
    Tong CJ, Chen MR, Chen SK, Yeh JW, Shun TT, Lin SJ, Chang SY (2005) Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurg Mater Transact Phys Metallurgy Mater Sci 36A:1263–1271CrossRefGoogle Scholar
  52. 52.
    Zhang KB, Fu ZY, Zhang JY, Shi J, Wang WM, Wang H, Wang YC, Zhang QJ (2010) Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J Alloys Compd 502(2):295–299, doi: CrossRefGoogle Scholar
  53. 53.
    von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case. J Phys C: Solid State Phys 5(13):1629–1642. doi: 10.1088/0022-3719/5/13/012 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Applied PhysicsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Applied Materials Physics, Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden
  3. 3.Pittsburgh Supercomputing CenterPittsburghUSA
  4. 4.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  5. 5.Division of Materials Theory, Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  6. 6.Wigner Research Centre for PhysicsInstitute for Solid State Physics and OpticsBudapestHungary

Personalised recommendations