The Calcium Entry-Calcium Refilling Coupling

  • Ziane Elaib
  • Francois Saller
  • Regis BobeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 898)


Calcium ions (Ca2+) are versatile messengers that need to be tidily regulated in time and space in order to create a large number of signals. The coupling between Ca2+ entry and Ca2+ refilling is playing a central role in this Ca2+ homeostasis. Since the capacitative Ca2+ entry has been described, different mechanisms have been proposed in order to explain how the Ca2+ entry could be under control of intracellular store Ca2+ depletion. Today, in addition of STIM1 and Orai1, the two major elements of SOCe, increasing attention is put on the role of the transient receptor potential canonical (TRPC), that can form protein clusters with Orai1, and Sarco/endoplasmic reticulum Ca2+ATPases (SERCAs), that refill the stores and are also located in the same environment than SOC clusters. Altogether, these proteins elaborate either Ca2+ microdomains in the vicinity of the membrane or larger Ca2+ increases overtaking the whole cell. The coupling between Ca2+ entry and Ca2+ refilling can possibly act much further away from the plasma membrane. Ca2+, uptaken by SERCAs, have been described to move faster and further in the ER than in the cytosol and to create specific signal that depends on Ca2+ entry but at longer distance from it. The complexity of such created Ca2+ currents resides in the heteromeric nature of channels as well as the presence of different intracellular stores controlled by SERCA2b and SERCA3, respectively. A role for mitochondria has also been explored. To date, mitochondria are other crucial compartments that play an important role in Ca2+ homeostasis. Although mitochondria mostly interact with intracellular stores, coupling of Ca2+ entry and mitochondria cannot be completely rule out.


SERCA STIM1 Orai1 TRPC channels 


  1. 1.
    Williams RJ (2006) The evolution of calcium biochemistry. Biochim Biophys Acta 1763(11):1139–1146PubMedCrossRefGoogle Scholar
  2. 2.
    Parekh AB (2008) Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function. J Physiol 586(13):3043–3054PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    McCarron JG, Chalmers S, Bradley KN, MacMillan D, Muir TC (2006) Ca2+ microdomains in smooth muscle. Cell Calcium 40(5–6):461–493PubMedCrossRefGoogle Scholar
  4. 4.
    Taylor CW, Berridge MJ, Cooke AM, Potter BV (1989) Inositol 1,4,5-trisphosphorothioate, a stable analogue of inositol trisphosphate which mobilizes intracellular calcium. Biochem J 259(3):645–650PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Berridge MJ (2004) Calcium signal transduction and cellular control mechanisms. Biochim Biophys Acta 1742(1–3):3–7PubMedCrossRefGoogle Scholar
  6. 6.
    Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40(5–6):405–412PubMedCrossRefGoogle Scholar
  7. 7.
    Tojyo Y, Morita T, Nezu A, Tanimura A (2014) Key components of store-operated Ca2+ entry in non-excitable cells. J Pharmacol Sci 125(4):340–346PubMedCrossRefGoogle Scholar
  8. 8.
    Putney JW (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12PubMedCrossRefGoogle Scholar
  9. 9.
    Takemura H, Hughes AR, Thastrup O, Putney JWJ (1989) Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. J Biol Chem 264:12266–12271PubMedGoogle Scholar
  10. 10.
    Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promotor, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+ -ATPase. Proc Natl Acad Sci U S A 87:2466–2470PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lewis RS, Cahalan MD (1989) Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul 1(1):99–112PubMedPubMedCentralGoogle Scholar
  12. 12.
    von Tscharner V, Prod’hom B, Baggiolini M, Reuter H (1986) Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 324(6095):369–372CrossRefGoogle Scholar
  13. 13.
    Kuno M, Gardner P (1987) Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326(6110):301–304PubMedCrossRefGoogle Scholar
  14. 14.
    Penner R, Matthews G, Neher E (1988) Regulation of calcium influx by second messengers in rat mast cells. Nature 334(6182):499–504PubMedCrossRefGoogle Scholar
  15. 15.
    Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364(6440):809–814PubMedCrossRefGoogle Scholar
  16. 16.
    Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6(2):113–120PubMedCrossRefGoogle Scholar
  17. 17.
    Dramane G, Akpona S, Besnard P, Khan NA, Pt A (2014) Cell mechanisms of gustatory lipids perception and modulation of the dietary fat preference. Biochimie 107 Pt A:11–14PubMedCrossRefGoogle Scholar
  18. 18.
    Irvine R (1990) ‘Quantal’ Ca2+ release and the control of Ca2+ entry by inositol phosphates. A possible mechanism. FEBS Lett 263:5–9PubMedCrossRefGoogle Scholar
  19. 19.
    Redondo PC, Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Intracellular Ca(2+) store depletion induces the formation of macromolecular complexes involving hTRPC1, hTRPC6, the type II IP(3) receptor and SERCA3 in human platelets. Biochim Biophys Acta 1783(6):1163–1176PubMedCrossRefGoogle Scholar
  20. 20.
    Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276(24):21303–21310PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rosado JA, Sage SO (2001) Activation of store-mediated calcium entry by secretion-like coupling between the inositol 1,4,5-trisphosphate receptor type II and human transient receptor potential (hTrp1) channels in human platelets. Biochem J 356(Pt 1):191–198PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277(44):42157–42163PubMedCrossRefGoogle Scholar
  23. 23.
    Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185PubMedCrossRefGoogle Scholar
  26. 26.
    Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16(20):2073–2079PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 103(24):9357–9362PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA, Gill DL (2006) STIM1 has a plasma membrane role in the activation of store-operated Ca(2+) channels. Proc Natl Acad Sci U S A 103(11):4040–4045PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Shen WW, Frieden M, Demaurex N (2011) Local cytosolic Ca2+ elevations are required for stromal interaction molecule 1 (STIM1) de-oligomerization and termination of store-operated Ca2+ entry. J Biol Chem 286(42):36448–36459PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135(1):110–122PubMedCrossRefGoogle Scholar
  32. 32.
    Demaurex N, Frieden M (2003) Measurements of the free luminal ER Ca(2+) concentration with targeted “cameleon” fluorescent proteins. Cell Calcium 34(2):109–119PubMedCrossRefGoogle Scholar
  33. 33.
    Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M (2006) Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281(47):35855–35862PubMedCrossRefGoogle Scholar
  34. 34.
    Zheng L, Stathopulos PB, Schindl R, Li GY, Romanin C, Ikura M (2011) Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci U S A 108(4):1337–1342PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454(7203):538–542PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174(6):803–813PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Orci L, Ravazzola M, Le Coadic M, Shen WW, Demaurex N, Cosson P (2009) STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum. Proc Natl Acad Sci U S A 106(46):19358–19362PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131(7):1327–1339PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Stathopulos PB, Zheng L, Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284(2):728–732PubMedCrossRefGoogle Scholar
  40. 40.
    McNally BA, Yamashita M, Engh A, Prakriya M (2009) Structural determinants of ion permeation in CRAC channels. Proc Natl Acad Sci U S A 106(52):22516–22521PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456(7218):116–120PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Madl J, Weghuber J, Fritsch R, Derler I, Fahrner M, Frischauf I, Lackner B, Romanin C, Schutz GJ (2010) Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells. J Biol Chem 285(52):41135–41142PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223PubMedCrossRefGoogle Scholar
  44. 44.
    Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233PubMedCrossRefGoogle Scholar
  45. 45.
    Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281(34):24979–24990PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338(6112):1308–1313PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Smyth JT, Dehaven WI, Bird GS, Putney JW Jr (2008) Ca2+-store-dependent and -independent reversal of Stim1 localization and function. J Cell Sci 121(Pt 6):762–772PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136(5):876–890PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11(3):337–343PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284(13):8421–8426PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385(1):49–54PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Korzeniowski MK, Manjarres IM, Varnai P, Balla T (2010) Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 3(148):ra82PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zhou Y, Meraner P, Kwon HT, Machnes D, Oh-hora M, Zimmer J, Huang Y, Stura A, Rao A, Hogan PG (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17(1):112–116PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Stathopulos PB, Schindl R, Fahrner M, Zheng L, Gasmi-Seabrook GM, Muik M, Romanin C, Ikura M (2013) STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 4:2963PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhou Y, Srinivasan P, Razavi S, Seymour S, Meraner P, Gudlur A, Stathopulos PB, Ikura M, Rao A, Hogan PG (2013) Initial activation of STIM1, the regulator of store-operated calcium entry. Nat Struct Mol Biol 20(8):973–981PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Derler I, Plenk P, Fahrner M, Muik M, Jardin I, Schindl R, Gruber HJ, Groschner K, Romanin C (2013) The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1. J Biol Chem 288(40):29025–29034PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    McNally BA, Somasundaram A, Yamashita M, Prakriya M (2012) Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482(7384):241–245PubMedPubMedCentralGoogle Scholar
  58. 58.
    Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356PubMedCrossRefGoogle Scholar
  59. 59.
    Demuro A, Penna A, Safrina O, Yeromin AV, Amcheslavsky A, Cahalan MD, Parker I (2011) Subunit stoichiometry of human Orai1 and Orai3 channels in closed and open states. Proc Natl Acad Sci U S A 108(43):17832–17837PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Shim AH, Tirado-Lee L, Prakriya M (2015) Structural and functional mechanisms of CRAC channel regulation. J Mol Biol 427(1):77–93PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Majewski L, Kuznicki J (2015) SOCE in neurons: signaling or just refilling? Biochim Biophys Acta 1853(9):1940–1952PubMedCrossRefGoogle Scholar
  62. 62.
    Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005(272):re3PubMedGoogle Scholar
  63. 63.
    DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587(Pt 10):2275–2298PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231(1):10–22PubMedCrossRefGoogle Scholar
  65. 65.
    Beech DJ (2005) TRPC1: store-operated channel and more. Pflugers Arch 451(1):53–60PubMedCrossRefGoogle Scholar
  66. 66.
    Vaca L, Sampieri A (2002) Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels. J Biol Chem 277(44):42178–42187PubMedCrossRefGoogle Scholar
  67. 67.
    Salido GM, Jardin I, Rosado JA (2011) The TRPC ion channels: association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. Adv Exp Med Biol 704:413–433PubMedCrossRefGoogle Scholar
  68. 68.
    Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32(3):439–448PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lopez JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281(38):28254–28264PubMedCrossRefGoogle Scholar
  70. 70.
    Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca(2+) influx mechanism in salivary gland cells. J Biol Chem 275(5):3403–3411PubMedCrossRefGoogle Scholar
  71. 71.
    Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104(11):4682–4687PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A 105(8):2895–2900PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Redondo PC, Harper AG, Harper MT, Brownlow SL, Rosado JA, Sage SO (2007) hTRPC1-associated alpha-actinin, and not hTRPC1 itself, is tyrosine phosphorylated during human platelet activation. J Thromb Haemost 5(12):2476–2483PubMedCrossRefGoogle Scholar
  74. 74.
    Asanov A, Sampieri A, Moreno C, Pacheco J, Salgado A, Sherry R, Vaca L (2015) Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels. Cell Calcium 57(1):1–13PubMedCrossRefGoogle Scholar
  75. 75.
    Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263PubMedCrossRefGoogle Scholar
  76. 76.
    Gudermann T, Mederos y Schnitzler M, Dietrich A (2004) Receptor-operated cation entry – more than esoteric terminology? Sci STKE 2004(243):pe35PubMedGoogle Scholar
  77. 77.
    Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Functional relevance of the de novo coupling between hTRPC1 and type II IP3 receptor in store-operated Ca2+ entry in human platelets. Cell Signal 20(4):737–747PubMedCrossRefGoogle Scholar
  78. 78.
    Alonso MT, Manjarres IM, Garcia-Sancho J (2012) Privileged coupling between Ca(2+) entry through plasma membrane store-operated Ca(2+) channels and the endoplasmic reticulum Ca(2+) pump. Mol Cell Endocrinol 353(1–2):37–44PubMedCrossRefGoogle Scholar
  79. 79.
    Burk SE, Lytton J, MacLennan DH, Shull GE (1989) cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem 264(31):18561–18568PubMedGoogle Scholar
  80. 80.
    Bobe R, Bredoux R, Wuytack F, Quarck R, Kovacs T, Papp B, Corvazier E, Magnier C, Enouf J (1994) The rat platelet 97-kDa Ca2+ATPase isoform is the sarcoendoplasmic reticulum Ca2+ATPase 3 protein. J Biol Chem 269(2):1417–1424PubMedGoogle Scholar
  81. 81.
    Dally S, Monceau V, Corvazier E, Bredoux R, Raies A, Bobe R, del Monte F, Enouf J (2009) Compartmentalized expression of three novel sarco/endoplasmic reticulum Ca2+ATPase 3 isoforms including the switch to ER stress, SERCA3f, in non-failing and failing human heart. Cell Calcium 45(2):144–154PubMedCrossRefGoogle Scholar
  82. 82.
    Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A 104(22):9301–9306PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lemonnier L, Trebak M, Lievremont JP, Bird GS, Putney JW Jr (2006) Protection of TRPC7 cation channels from calcium inhibition by closely associated SERCA pumps. FASEB J 20(3):503–505PubMedGoogle Scholar
  84. 84.
    Redondo PC, Salido GM, Pariente JA, Sage SO, Rosado JA (2008) SERCA2b and 3 play a regulatory role in store-operated calcium entry in human platelets. Cell Signal 20(2):337–346PubMedCrossRefGoogle Scholar
  85. 85.
    Bobe R, Hadri L, Lopez JJ, Sassi Y, Atassi F, Karakikes I, Liang L, Limon I, Lompre AM, Hatem SN, Hajjar RJ, Lipskaia L (2011) SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells. J Mol Cell Cardiol 50(4):621–633PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Sampieri A, Zepeda A, Asanov A, Vaca L (2009) Visualizing the store-operated channel complex assembly in real time: identification of SERCA2 as a new member. Cell Calcium 45(5):439–446PubMedCrossRefGoogle Scholar
  87. 87.
    Lopez JJ, Jardin I, Bobe R, Pariente JA, Enouf J, Salido GM, Rosado JA (2008) STIM1 regulates acidic Ca2+ store refilling by interaction with SERCA3 in human platelets. Biochem Pharmacol 75(11):2157–2164PubMedCrossRefGoogle Scholar
  88. 88.
    Jousset H, Frieden M, Demaurex N (2007) STIM1 knockdown reveals that store-operated Ca2+ channels located close to sarco/endoplasmic Ca2+ ATPases (SERCA) pumps silently refill the endoplasmic reticulum. J Biol Chem 282(15):11456–11464PubMedCrossRefGoogle Scholar
  89. 89.
    Vaca L (2010) SOCIC: the store-operated calcium influx complex. Cell Calcium 47(3):199–209PubMedCrossRefGoogle Scholar
  90. 90.
    Manjarres IM, Alonso MT, Garcia-Sancho J (2011) Calcium entry-calcium refilling (CECR) coupling between store-operated Ca(2+) entry and sarco/endoplasmic reticulum Ca(2+)-ATPase. Cell Calcium 49(3):153–161PubMedCrossRefGoogle Scholar
  91. 91.
    Kovacs T, Berger G, Corvazier E, Paszty K, Brown A, Bobe R, Papp B, Wuytack F, Cramer EM, Enouf J (1997) Immunolocalization of the multi-sarco/endoplasmic reticulum Ca2+ATPase system in human platelets. Br J Haematol 97(1):192–203PubMedCrossRefGoogle Scholar
  92. 92.
    Lopez JJ, Redondo PC, Salido GM, Pariente JA, Rosado JA (2006) Two distinct Ca(2+) compartments show differential sensitivity to thrombin, ADP and vasopressin in human platelets. Cell Signal 18(3):373–381PubMedCrossRefGoogle Scholar
  93. 93.
    Rosado JA, Lopez JJ, Harper AG, Harper MT, Redondo PC, Pariente JA, Sage SO, Salido GM (2004) Two pathways for store-mediated calcium entry differentially dependent on the actin cytoskeleton in human platelets. J Biol Chem 279(28):29231–29235PubMedCrossRefGoogle Scholar
  94. 94.
    Lopez JJ, Camello-Almaraz C, Pariente JA, Salido GM, Rosado JA (2005) Ca2+ accumulation into acidic organelles mediated by Ca2+- and vacuolar H+-ATPases in human platelets. Biochem J 390(Pt 1):243–252PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A (2002) NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111(5):703–708PubMedCrossRefGoogle Scholar
  96. 96.
    Ruas M, Davis LC, Chen CC, Morgan AJ, Chuang KT, Walseth TF, Grimm C, Garnham C, Powell T, Platt N, Platt FM, Biel M, Wahl-Schott C, Parrington J, Galione A (2015) Expression of Ca2+-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells. EMBO J 34(13):1743–1758PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Patel S (2015) Function and dysfunction of two-pore channels. Sci Signal 8(384):re7PubMedCrossRefGoogle Scholar
  98. 98.
    Simmerman HK, Jones LR (1998) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78(4):921–947PubMedGoogle Scholar
  99. 99.
    Bhupathy P, Babu GJ, Periasamy M (2007) Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. J Mol Cell Cardiol 42(5):903–911PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN (2013) Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci U S A 110(31):12526–12534PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79(4):1127–1155PubMedGoogle Scholar
  102. 102.
    Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is Essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278(45):44769–44779PubMedCrossRefGoogle Scholar
  103. 103.
    Hoth M, Button DC, Lewis RS (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci U S A 97(19):10607–10612PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20(8):1863–1874PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446(7133):284–287PubMedCrossRefGoogle Scholar
  106. 106.
    Gilabert JA, Parekh AB (2000) Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC). EMBO J 19(23):6401–6407PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810PubMedCrossRefGoogle Scholar
  108. 108.
    Demaurex N, Poburko D, Frieden M (2009) Regulation of plasma membrane calcium fluxes by mitochondria. Biochim Biophys Acta 1787(11):1383–1394PubMedCrossRefGoogle Scholar
  109. 109.
    Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39(1):121–132PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38(2):280–290PubMedCrossRefGoogle Scholar
  111. 111.
    Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766PubMedCrossRefGoogle Scholar
  112. 112.
    Arnaudeau S, Kelley WL, Walsh JV Jr, Demaurex N (2001) Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 276(31):29430–29439PubMedCrossRefGoogle Scholar
  113. 113.
    Li B, Xiao L, Wang ZY, Zheng PS (2014) Knockdown of STIM1 inhibits 6-hydroxydopamine-induced oxidative stress through attenuating calcium-dependent ER stress and mitochondrial dysfunction in undifferentiated PC12 cells. Free Radic Res 48(7):758–768PubMedCrossRefGoogle Scholar
  114. 114.
    Singaravelu K, Nelson C, Bakowski D, de Brito OM, Ng SW, Di Capite J, Powell T, Scorrano L, Parekh AB (2011) Mitofusin 2 regulates STIM1 migration from the Ca2+ store to the plasma membrane in cells with depolarized mitochondria. J Biol Chem 286(14):12189–12201PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, Petersen OH (1999) Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca(2+) signals. EMBO J 18(18):4999–5008PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Mogami H, Nakano K, Tepikin AV, Petersen OH (1997) Ca2+ flow via tunnels in polarized cells: recharging of apicl Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 88:49–55PubMedCrossRefGoogle Scholar
  117. 117.
    Mogami H, Tepikin AV, Petersen OH (1998) Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. EMBO J 17(2):435–442PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Courjaret R, Machaca K (2014) Mid-range Ca2+ signalling mediated by functional coupling between store-operated Ca2+ entry and IP3-dependent Ca2+ release. Nat Commun 5:3916PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Inserm U1176Le Kremlin BicetreFrance
  2. 2.UMR_S 1176, Univ Paris SudLe Kremlin BicetreFrance

Personalised recommendations