Processing of Human Body Odors

Part of the Springer Handbooks book series (SHB)


Human chemosensory signals are able to transmit a wide range of social information to conspecifics. Resulting from the interaction of several genetic and physiological processes (e. g., metabolic, immune, nervous), each individual produces a unique odor signature. The central processing of such chemosignals by conspecifics modifies physiological, behavioral, and psychological responses. To illuminate the importance of this mode of communication, we describe how humans produce, decode, and respond to warning chemosignals. Behavioral evidence highlighting the cognitive and emotional consequences of body odor communication will be discussed. Special attention will be devoted to the current understanding of human body odor neural processing. After an overview on the topic, we discuss the role that social chemosignals may have in our everyday life in health and disease.


Autism Spectrum Disorder Posterior Cingulate Cortex Harm Avoidance Angular Gyrus Body Odor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

3-methyl-2-hexenoic acid


anterior cingulate cortex


human leukocyte antigen


major histocompatibility complex


magnetic resonance imaging


posterior cingulate cortex




ribonucleic acid


  1. [1]
    G.R. Semin, G. Echterhoff (Eds.): Grounding Sociality: Neurons, Mind, and Culture (Psychology, New York 2011)Google Scholar
  2. [2]
    M. Knapp, J. Hall, T. Horgan: Nonverbal Communication in Human Interaction (Cengage Learning, Boston 2013)Google Scholar
  3. [3]
    T.D. Wyatt: Pheromones and Animal Behavior: Chemical Signals and Signatures (Cambridge Univ. Press, Cambridge 2014)Google Scholar
  4. [4]
    K.T. Lübke, B.M. Pause: Sex-hormone dependent perception of androstenone suggests its involvement in communicating competition and aggression, Physiol. behav. 123, 136–141 (2014)CrossRefGoogle Scholar
  5. [5]
    S.C. Roberts, J. Havlicek: Evolutionary psychology and perfume design. In: Applied Evolutionary Psychology, ed. by S.C. Roberts (Oxford Univ. Press, Oxford 2012) pp. 330–348Google Scholar
  6. [6]
    T.K. Saxton, A. Lyndon, A.C. Little, S.C. Roberts: Evidence that androstadienone, a putative human chemosignal, modulates women’s attributions of men’s attractiveness, Horm. Behav. 54, 597–601 (2008)CrossRefGoogle Scholar
  7. [7]
    J.N. Lundström, M.J. Olsson: Chapter one-functional neuronal processing of human body odors, Vitam. Horm. 83, 1–23 (2010)CrossRefGoogle Scholar
  8. [8]
    B.M. Pause: Processing of body odor signals by the human brain, Chemosens. Percept. 5, 55–63 (2012)CrossRefGoogle Scholar
  9. [9]
    G.R. Semin, J.H.B. De Groot: The chemical bases of human sociality, Trends in Cognitive Sci. 17, 427–429 (2013)CrossRefGoogle Scholar
  10. [10]
    M.J. Russell: Human olfactory communication, Nature 260, 520–522 (1976)CrossRefGoogle Scholar
  11. [11]
    M. Schleidt, B. Hold, G. Attili: A cross-cultural study on the attitude towards personal odors, J. Chem. Ecol. 7, 19–31 (1981)CrossRefGoogle Scholar
  12. [12]
    M. Schleidt: Personal odor and nonverbal communication, Ethol. Sociobiol. 1, 225–231 (1980)CrossRefGoogle Scholar
  13. [13]
    B. Hold, M. Schleidt: The importance of human odour in non-verbal communication, Z. für Tierpsychol. 43, 225–238 (1977)CrossRefGoogle Scholar
  14. [14]
    S.M. Platek, R.L. Burch, G.G. Gallup: Sex differences in olfactory self-recognition, Physiol. Behav. 73, 635–640 (2001)CrossRefGoogle Scholar
  15. [15]
    J.N. Lundström, J.A. Boyle, R.J. Zatorre, M. Jones-Gotman: The neuronal substrates of human olfactory based kin recognition, Hum. brain mapp. 30, 2571–2580 (2009)CrossRefGoogle Scholar
  16. [16]
    S.C. Roberts, L.M. Gosling, T.D. Spector, P. Miller, D.J. Penn, M. Petrie: Body odor similarity in noncohabiting twins, Chem. Senses 30, 651–656 (2005)CrossRefGoogle Scholar
  17. [17]
    R.H. Porter, J.D. Moore: Human kin recognition by olfactory cues, Physiol. Behav. 27, 493–495 (1981)CrossRefGoogle Scholar
  18. [18]
    J.N. Lundström, M. Jones-Gotman: Romantic love modulates women’s identification of men’s body odors, Horm. Behav. 55, 280–284 (2009)CrossRefGoogle Scholar
  19. [19]
    R.H. Porter, R.D. Balogh, J.M. Cernoch, C. Franchi: Recognition of kin through characteristic body odors, Chem. Senses 11, 389–395 (1986)CrossRefGoogle Scholar
  20. [20]
    R.H. Porter, J.M. Cernoch, R.D. Balogh: Odor signatures and kin recognition, Physiol. Behav. 34, 445–448 (1985)CrossRefGoogle Scholar
  21. [21]
    S. Mitro, A.R. Gordon, M.J. Olsson, J.N. Lundström: The smell of age: Perception and discrimination of body odors of different ages, PloS one 7, e38110 (2012)CrossRefGoogle Scholar
  22. [22]
    D.J. Penn, E. Oberzaucher, K. Grammer, G. Fischer, H.A. Soini, D. Wiesler, M.V. Novotny, S.J. Dixon, Y. Xu, R.G. Brereton: Individual and gender fingerprints in human body odour, J. R. Soc. Interface 4, 331–340 (2007)CrossRefGoogle Scholar
  23. [23]
    A. Sorokowska, P. Sorokowski, A. Szmajke: Does personality smell? Accuracy of personality assessments based on body odour, Eur. J. Personal. 26, 496–503 (2012)CrossRefGoogle Scholar
  24. [24]
    M.J. Olsson, J.N. Lundström, B.A. Kimball, A.R. Gordon, B. Karshikoff, N. Hosseini, V. Sorjonen, C.O. Höglund, C. Solaks, A. Soop, J. Axelsson, M. Lekander: The scent of disease human body odor contains an early chemosensory cue of sickness, Psychol. Sci. 25(3), 817–823 (2014)CrossRefGoogle Scholar
  25. [25]
    K.A. Gildersleeve, M.G. Haselton, C.M. Larson, E.G. Pillsworth: Body odor attractiveness as a cue of impending ovulation in women: Evidence from a study using hormone-confirmed ovulation, Horm. Behav. 61, 157–166 (2012)CrossRefGoogle Scholar
  26. [26]
    J.H.B. de Groot, M.A.M. Smeets, M.J. Rowson, P.J. Bulsing, C.G. Blonk, J.E. Wilkinson, G.R. Semin: A sniff of happiness, Psychol. Sci. 26(6), 684–700 (2015)CrossRefGoogle Scholar
  27. [27]
    J.H.B. de Groot, M.A.M. Smeets, G.R. Semin: Rapid stress system drives chemical transfer of fear from sender to receiver, PLoS one 10, e0118211–e0118211 (2015) Google Scholar
  28. [28]
    J.H.B. de Groot, M.A.M. Smeets, A. Kaldewaij, M.J.A. Duijndam, G.R. Semin: Chemosignals communicate human emotions, Psychol. Sci. 23, 1417–1424 (2012)CrossRefGoogle Scholar
  29. [29]
    D. Rubin, Y. Botanov, G. Hajcak, L.R. Mujica-Parodi: Second-hand stress: Inhalation of stress sweat enhances neural response to neutral faces, Soc. Cognitive Affect. Neurosci. 7, 208–212 (2012)CrossRefGoogle Scholar
  30. [30]
    J. Albrecht, M. Demmel, V. Schöpf, A.M. Kleemann, R. Kopietz, J. May, T. Schreder, R. Zernecke, H. Brükmann, M. Wiesmann: Smelling chemosensory signals of males in anxious versus nonanxious condition increases state anxiety of female subjects, Chem. Senses 36, 19–27 (2011)CrossRefGoogle Scholar
  31. [31]
    L.R. Mujica-Parodi, H.H. Strey, B. Frederick, R. Savoy, D. Cox, Y. Botanov, D. Tolkunov, D. Rubin, J. Weber: Chemosensory cues to conspecific emotional stress activate amygdala in humans, PLoS One 4, e6415 (2009)CrossRefGoogle Scholar
  32. [32]
    W. Zhou, D. Chen: Sociochemosensory and emotional functions behavioral evidence for shared mechanisms, Psychol. Sci. 20, 1118–1124 (2009)CrossRefGoogle Scholar
  33. [33]
    A. Prehn-Kristensen, C. Wiesner, T.O. Bergmann, S. Wolff, O. Jansen, H.M. Mehdorn, R. Ferstl, B.M. Pause: Induction of empathy by the smell of anxiety, PloS one 4, e5987 (2009)CrossRefGoogle Scholar
  34. [34]
    W. Zhou, D. Chen: Encoding human sexual chemosensory cues in the orbitofrontal and fusiform cortices, J. Neurosci. 28, 14416–14421 (2008)CrossRefGoogle Scholar
  35. [35]
    D. Chen, A. Katdare, N. Lucas: Chemosignals of fear enhance cognitive performance in humans, Chem. Senses 31, 415–423 (2006)CrossRefGoogle Scholar
  36. [36]
    A. Prehn, A. Ohrt, B. Sojka, R. Ferstl, B.M. Pause: Chemosensory anxiety signals augment the startle reflex in humans, Neurosci. lett. 394, 127–130 (2006)CrossRefGoogle Scholar
  37. [37]
    D. Chen, J. Haviland-Jones: Human olfactory communication of emotion, Percept. Motor Skills 91, 771–781 (2000)CrossRefGoogle Scholar
  38. [38]
    R. Zernecke, K. Haegler, A.M. Kleemann, J. Albrecht, T. Frank, J. Linn, H. Brückmann, M. Wiesmann: Effects of male anxiety chemosignals on the evaluation of happy facial expressions, J. Psychophysiol. 25, 116 (2011)CrossRefGoogle Scholar
  39. [39]
    K. Haegler, R. Zernecke, A.M. Kleemann, J. Albrecht, O. Pollatos, H. Brückmann, M. Wiesmann: No fear no risk! Human risk behavior is affected by chemosensory anxiety signals, Neuropsychol. 48, 3901–3908 (2010) Google Scholar
  40. [40]
    W. Turner: The convolutions of the brain: A study in comparative anatomy, J. Anatomy Physiol. 25, 105–153 (1890)Google Scholar
  41. [41]
    D. Liebetanz, M. Nitsche, C. Fromm, C.K. Reyher: Central olfactory connections in the microsmatic marmoset monkey (Callithrix jacchus), Cells, Tissues, Organs 172, 53–69 (2001)CrossRefGoogle Scholar
  42. [42]
    G. Elliot Smith: The Evolution of Man (Oxford Univ. Press, New York 1927)Google Scholar
  43. [43]
    A.J.E. Cave: The primate nasal fossa, Biol. J. Linn. Soc. 5, 377–387 (1973)Google Scholar
  44. [44]
    W.E. Le Gros Clark: The Antecedents of Man (Edinburgh Univ. Press, Edinburgh 1959)Google Scholar
  45. [45]
    G. Baron, H.D. Frahm, K.P. Bhatnagar, H. Stephan: Comparison of brain structure volumes in Insectivora and Primates. III. Main olfactory bulb (MOB), J. fur Hirnforsch. 24, 551–568 (1982)Google Scholar
  46. [46]
    R.D. Martin, A.-E. Martin: Primate Origins and Evolution: A Phylogenetic Reconstruction (Chapman Hall, London 1990)Google Scholar
  47. [47]
    P. Broca, S. Pozzi: Mémoires sur le cerveau de l’homme et des primates (C. Reinwald, Paris 1888), FrenchCrossRefGoogle Scholar
  48. [48]
    E.B. Keverne: Chemical communication in primate reproduction. In: Pheromones and Reproduction in Mammals, ed. by J. Vandenbergh (Academic, New York 1983) pp. 79–92CrossRefGoogle Scholar
  49. [49]
    E.B. Keverne: Olfaction and the reproductive behavior of nonhuman primates. In: Primate Communication, ed. by C.T. Snowdon, C.H. Brown (Cambridge Univ. Press, Cambridge 1982) pp. 396–412Google Scholar
  50. [50]
    E.B. Keverne: Olfaction in the behaviour of non-human primates, Symp. Zool. Soc. Lond. 45, 313–327 (1980)Google Scholar
  51. [51]
    B. Malnic, J. Hirono, T. Sato, L.B. Buck: Combinatorial receptor codes for odors, Cell 96, 713–723 (1999)CrossRefGoogle Scholar
  52. [52]
    L. Buck, R. Axel: A novel multigene family may encode odorant receptors: A molecular basis for odor recognition, Cell 65, 175–187 (1991)CrossRefGoogle Scholar
  53. [53]
    G. Glusman, I. Yanai, I. Rubin, D. Lancet: The complete human olfactory subgenome, Genome Res. 11, 685–702 (2001)CrossRefGoogle Scholar
  54. [54]
    S. Rouquier, A. Blancher, D. Giorgi: The olfactory receptor gene repertoire in primates and mouse: Evidence for reduction of the functional fraction in primates, Proc. Nat. Aca. Sci. 97, 2870–2874 (2000)CrossRefGoogle Scholar
  55. [55]
    J.M. Young, C. Friedman, E.M. Williams, J.A. Ross, L. Tonnes-Priddy, B.J. Trask: Different evolutionary processes shaped the mouse and human olfactory receptor gene families, Hum. Molecular Genetics 11, 535–546 (2002)CrossRefGoogle Scholar
  56. [56]
    Y. Tutar: Pseudogenes, Comparative Functional Genomics 2012, 424526 (2012)CrossRefGoogle Scholar
  57. [57]
    M. Laska, A. Wieser, L.T.H. Salazar: Olfactory responsiveness to two odorous steroids in three species of nonhuman primates, Chem. Senses 30, 505–511 (2005)CrossRefGoogle Scholar
  58. [58]
    M. Laska, P. Teubner: Olfactory discrimination ability for homologous series of aliphatic alcohols and aldehydes, Chem. Senses 24, 263–270 (1999)CrossRefGoogle Scholar
  59. [59]
    M. Laska, P. Teubner: Olfactory discrimination ability of human subjects for ten pairs of enantiomers, Chem. Senses 24, 161–170 (1999)CrossRefGoogle Scholar
  60. [60]
    M. Laska, D. Freyer: Olfactory discrimination ability for aliphatic esters in squirrel monkeys and humans, Chem. Senses 22, 457–465 (1997)CrossRefGoogle Scholar
  61. [61]
    M. Laska, P. Teubner: Odor structure-activity relationships of carboxylic acids correspond between squirrel monkeys and humans, Am. J. Physiol.-Regul, Integrat. Comparat. Physiol. 274, R1639–R1645 (1998)Google Scholar
  62. [62]
    G.M. Shepherd: The human sense of smell: Are we better than we think?, PLoS Biol. 2, e146 (2004)CrossRefGoogle Scholar
  63. [63]
    C. Zelano, N. Sobel: Humans as an animal model for systems-level organization of olfaction, Neuron 48, 431–454 (2005)CrossRefGoogle Scholar
  64. [64]
    M.L. Whisman, J.W. Goetzinger, F.O. Cotton, D.W. Brinkman: Odorant evaluation: A study of ethanethiol and tetrahydrothiophene as warning agents in propane, Environ. Sci. Technol. 12, 1285–1288 (1978)CrossRefGoogle Scholar
  65. [65]
    Y. Yeshurun, N. Sobel: An odor is not worth a thousand words: From multidimensional odors to unidimensional odor objects, Annual Rev. Psychol. 61, 219–241 (2010)CrossRefGoogle Scholar
  66. [66]
    Statistic Brain: Perfume Industry Statistics,
  67. [67]
    J.M. Smith, D. Harper: Animal Signals (Oxford Univ. Press, Oxford 2003)Google Scholar
  68. [68]
    R.L. Doty: The Great Pheromone Myth (JHU Press, Baltimore 2010)Google Scholar
  69. [69]
    B. Schaal, L. Marlier, R. Soussignan: Olfactory function in the human fetus: Evidence from selective neonatal responsiveness to the odor of amniotic fluid, Behav. Neurosci. 112, 1438 (1998)CrossRefGoogle Scholar
  70. [70]
    H. Varendi, R.H. Porter, J. Winberg: Natural odour preferences of newborn infants change over time, Acta Paediatr. 86, 985–990 (1997)CrossRefGoogle Scholar
  71. [71]
    L. Marlier, B. Schaal, R. Soussignan: Bottle-fed neonates prefer an odor experienced in utero to an odor experienced postnatally in the feeding context, Dev. Psychobiol. 33, 133–145 (1998)CrossRefGoogle Scholar
  72. [72]
    R.H. Porter: The biological significance of skin-to-skin contact and maternal odours, Acta Paediatr. 93, 1560–1562 (2004)CrossRefGoogle Scholar
  73. [73]
    H. Varendi, R.H. Porter: Breast odour as the only maternal stimulus elicits crawling towards the odour source, Acta Paediatr. 90, 372–375 (2001)CrossRefGoogle Scholar
  74. [74]
    R.M. Sullivan, P. Toubas: Clinical usefulness of maternal odor in newborns: Soothing and feeding preparatory responses, Biol. Neonate 74, 402 (1998)CrossRefGoogle Scholar
  75. [75]
    S. Gelstein, Y. Yeshurun, L. Rozenkrantz, S. Shushan, I. Frumin, Y. Roth: Human tears contain a chemosignal, Science 331, 226–230 (2011)CrossRefGoogle Scholar
  76. [76]
    H.J. Hurley: The Eccrine Sweat Glands: Structure and Function, The Biology of the Skin (The Parthenon Publishing Group, New York 2001) pp. 47–76Google Scholar
  77. [77]
    F. Noël, C. Piérard-Franchimont, G.E. Piérard, P. Quatresooz: Sweaty skin, background and assessments, Int. J. Dermatol. 51, 647–655 (2012)CrossRefGoogle Scholar
  78. [78]
    R.J. Auchus, W.E. Rainey: Adrenarche–physiology, biochemistry and human disease, Clin. Endocrinol. 60, 288–296 (2004)CrossRefGoogle Scholar
  79. [79]
    W. Montagna, P.F. Parakkal: The Structure and Function of Skin 3E, 3rd edn. (Academic, New York 1974)Google Scholar
  80. [80]
    K. Sato: The mechanism of eccrine sweat secretion, Perspect. Exercise Sci. Sports Medicine 6, 85–118 (1993)Google Scholar
  81. [81]
    K. Sato, F. Sato: Sweat secretion by human axillary apoeccrine sweat gland in vitro, Am. J. Physiol.-Regulat, Integrat. Comparat. Physiol. 252, R181–R187 (1987)Google Scholar
  82. [82]
    A.J. Thody, S. Shuster: Control and function of sebaceous glands, Physiol. Rev. 69, 383–416 (1989)Google Scholar
  83. [83]
    C.J. Harvey, R.F. LeBouf, A.B. Stefaniak: Formulation and stability of a novel artificial human sweat under conditions of storage and use, Toxicol. in vitro 24, 1790–1796 (2010)CrossRefGoogle Scholar
  84. [84]
    J.N. Labows, K.J. McGinley, A.M. Kligman: Perspectives on axillary odor, J. Soc. Cosmet. Chem. 34, 193–202 (1982)Google Scholar
  85. [85]
    J.J. Leyden, K.J. McGinley, E. Hölzle, J.N. Labows, A.M. Kligman: The microbiology of the human axilla and its relationship to axillary odor, J. Invest. Dermatol. 77, 413–416 (1981)CrossRefGoogle Scholar
  86. [86]
    X.-N. Zeng, J.J. Leyden, A.I. Spielman, G. Preti: Analysis of characteristic human female axillary odors: Qualitative comparison to males, J. Chem. Ecol. 22, 237–257 (1996)CrossRefGoogle Scholar
  87. [87]
    C. Zeng, A.I. Spielman, B.R. Vowels, J.J. Leyden, K. Biemann, G. Preti: A human axillary odorant is carried by apolipoprotein D, Proc. Nat. Aca. Sci. 93, 6626–6630 (1996)CrossRefGoogle Scholar
  88. [88]
    X.-N. Zeng, J.J. Leyden, J.G. Brand, A.I. Spielman, K.J. McGinley, G. Preti: An investigation of human apocrine gland secretion for axillary odor precursors, J. Chem. Ecol. 18, 1039–1055 (1992)CrossRefGoogle Scholar
  89. [89]
    E.A. Grice, J.A. Segre: The skin microbiome, Nature Rev. Microbiol. 9, 244–253 (2011)CrossRefGoogle Scholar
  90. [90]
    D. Taylor, A. Daulby, S. Grimshaw, G. James, J. Mercer, S. Vaziri: Characterization of the microflora of the human axilla, Int. J. Cos. Sci. 25, 137–145 (2003)CrossRefGoogle Scholar
  91. [91]
    E.K. Costello, C.L. Lauber, M. Hamady, N. Fierer, J.I. Gordon, R. Knight: Bacterial community variation in human body habitats across space and time, Science 326, 1694–1697 (2009)CrossRefGoogle Scholar
  92. [92]
    Z. Gao, G.I. Perez-Perez, Y. Chen, M.J. Blaser: Quantitation of major human cutaneous bacterial and fungal populations, J. Clin. Microbiol. 48, 3575–3581 (2010)CrossRefGoogle Scholar
  93. [93]
    E.A. Grice, H.H. Kong, S. Conlan, C.B. Deming, J. Davis, A.C. Young, C.G. Bouffard, R.W. Blakesley, P.R. Murray, E.D. Green, M.L. Turner, J.A. Segre: NISC comp. seq. program: Topographical and temporal diversity of the human skin microbiome, Science 324, 1190–1192 (2009)CrossRefGoogle Scholar
  94. [94]
    A. Natsch, S. Derrer, F. Flachsmann, J. Schmid: A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type, Chem. Biodivers. 3, 1–20 (2006)CrossRefGoogle Scholar
  95. [95]
    M. Troccaz, G. Borchard, C. Vuilleumier, S. Raviot-Derrien, Y. Niclass, S. Beccucci, C. Starkenmann: Gender-specific differences between the concentrations of nonvolatile (R)/(S)-3-methyl-3-sulfanylhexan-1-Ol and (R)/(S)-3-hydroxy-3-methyl-hexanoic acid odor precursors in axillary secretions, Chem. Senses 34, 203–210 (2009)CrossRefGoogle Scholar
  96. [96]
    A.I. Mallet, K.T. Holland, P.J. Rennie, W.J. Watkins, D.B. Gower: Applications of gas chromatography – mass spectrometry in the study of androgen and odorous 16-androstene metabolism by human axillary bacteria, J. Chromatogra. B: Biomed. Sci. Appl. 562, 647–658 (1991)CrossRefGoogle Scholar
  97. [97]
    J.N. Labows: Odor detection, generation and etiology in the axilla. In: Antiperspirants and Deodorants, ed. by C. Felger, K. Laden (Marcell Dekker, New York 1988) pp. 321–343Google Scholar
  98. [98]
    C. Austin, J. Ellis: Microbial pathways leading to steroidal malodour in the axilla, J. Steroid Biochem. Molecular Biol. 87, 105–110 (2003)CrossRefGoogle Scholar
  99. [99]
    D.B. Gower, K.T. Holland, A.I. Mallet, P.J. Rennie, W.J. Watkins: Comparison of 16-androstene steroid concentrations in sterile apocrine sweat and axillary secretions: Interconversions of 16-androstenes by the axillary microflora – a mechanism for axillary odour production in man?, J. Steroid Biochem. Molecular Biol. 48, 409–418 (1994)CrossRefGoogle Scholar
  100. [100]
    E. Fredrich, H. Barzantny, I. Brune, A. Tauch: Daily battle against body odor: Towards the activity of the axillary microbiota, Trends in Microbiol. 21, 305–312 (2013)CrossRefGoogle Scholar
  101. [101]
    C. Wedekind, T. Seebeck, F. Bettens, A.J. Paepke: The intensity of human body odors and the MHC: Should we expect a link?, Evolutionary Psychol. 4, 85–94 (2006)CrossRefGoogle Scholar
  102. [102]
    L. Secundo, K. Snitz, K. Weissler, L. Pinchover, Y. Shoenfeld, R. Loewenthal, N. Agmon-Levin, I. Frumin, D. Bar-Zvi, S. Shushan, N. Sobel: Individual olfactory perception reveals meaningful nonolfactory genetic information, Proc. Nat. Aca. Sci. US (2015), DOI:10.1073/pnas.1424826112Google Scholar
  103. [103]
    X.-N. Zeng, J.J. Leyden, H.J. Lawley, K. Sawano, I. Nohara, G. Preti: Analysis of characteristic odors from human male axillae, J. Chem. Ecol. 17, 1469–1492 (1991)CrossRefGoogle Scholar
  104. [104]
    K.T. Lübke, B.M. Pause: Always follow your nose: The functional significance of social chemosignals in human reproduction and survival, Horm. Behav. 68, 134–144 (2015)CrossRefGoogle Scholar
  105. [105]
    H.J. Hurley, W.B. Shelley: The Human Apocrine Sweat Gland in Health and Disease, American Lecture, Vol. 376 (C.C. Thomas, Springfield 1960)Google Scholar
  106. [106]
    A. Kawahata: Sex differences in sweating. In: Essential Problems in Climatic Physiology, ed. by H. Yoshimura, S. Itoh, Y. Kuno, K. Ogato (Nankodi, Kyoto 1960) pp. 169–184Google Scholar
  107. [107]
    R.A. McCance: Individual variations in response to high temperatures and to the production of experimental salt deficiency, The Lancet 232, 190–191 (1938)CrossRefGoogle Scholar
  108. [108]
    J. Rees, S. Shuster: Pubertal induction of sweat gland activity, Clin. Sci. 60, 689–692 (1981)CrossRefGoogle Scholar
  109. [109]
    R. Marples: The normal flora of different sites in the young adult, Curr. Med. Res. Opin. 7, 67 (1982)Google Scholar
  110. [110]
    D.A. Somerville: The normal flora of the skin in different age groups, Br. J. Dermatol. 81, 248–258 (1969)CrossRefGoogle Scholar
  111. [111]
    P.J.H. Jackman, W.C. Noble: Normal axillary skin in various populations, Clin. Exp. Dermatol. 8, 259–268 (1983)CrossRefGoogle Scholar
  112. [112]
    G. Preti, W.B. Cutler, C.M. Christensen, H. Lawley, G.R. Huggins, C.-R. Garcia: Human axillary extracts: Analysis of compounds from samples which influence menstrual timing, J. Chem. Ecol. 13, 717–731 (1987)CrossRefGoogle Scholar
  113. [113]
    G. Preti, J.J. Leyden: Genetic influences on human body odor: From genes to the axillae, J. Invest. Dermatol. 130, 344–346 (2010)CrossRefGoogle Scholar
  114. [114]
    A. Martin, M. Saathoff, F. Kuhn, H. Max, L. Terstegen, A. Natsch: A functional ABCC11 allele is essential in the biochemical formation of human axillary odor, J. Invest. Dermatol. 130, 529–540 (2010)CrossRefGoogle Scholar
  115. [115]
    P.B. Singh: Chemosensation and genetic individuality, Reproduction 121, 529–539 (2001)CrossRefGoogle Scholar
  116. [116]
    K. Yamazaki, G.K. Beauchamp, A. Singer, J. Bard, E.A. Boyse: Odortypes: Their origin and composition, Proc. Nat. Aca. Sci. 96, 1522–1525 (1999)CrossRefGoogle Scholar
  117. [117]
    J.L. Tiwari, P.I. Terasaki: HLA and Disease Associations (Springer, New York 1985)CrossRefGoogle Scholar
  118. [118]
    M. Shirasu, K. Touhara: The scent of disease: Volatile organic compounds of the human body related to disease and disorder, J. Biochem. 150, 257–266 (2011)CrossRefGoogle Scholar
  119. [119]
    B. Palouzier-Paulignan, M.-C. Lacroix, P. Aimé, C. Baly, M. Caillol, P. Congar, A.K. Julliard, K. Tucker, D.A. Fadool: Olfaction under metabolic influences, Chem. Senses 37, 769–797 (2012)CrossRefGoogle Scholar
  120. [120]
    J. Havlicek, P. Lenochova: The effect of meat consumption on body odor attractiveness, Chem. Senses 31, 747–752 (2006)CrossRefGoogle Scholar
  121. [121]
    I. Frumin, O. Perl, Y. Endevelt-Shapira, A. Eisen, N. Eshel, I. Heller, M. Shemeh, A. Rvia, L. Sela, A. Arzi, N. Sobel: A social chemosignaling function for human handshaking, eLife 4, e05154 (2015)CrossRefGoogle Scholar
  122. [122]
    P. Lenochova, S.C. Roberts, J. Havlicek: Methods of human body odor sampling: The effect of freezing, Chem. Senses 34, 127–138 (2009)CrossRefGoogle Scholar
  123. [123]
    K.A. Prokop-Prigge, C.J. Mansfield, M.R. Parker, E. Thaler, E.A. Grice, C.J. Wysocki, G. Preti: Ethnic/racial and genetic influences on cerumen odorant profiles, J. Chem. Ecol. 41(1), 67–74 (2015)CrossRefGoogle Scholar
  124. [124]
    W.B. Shelley, H.J. Hurley, A.C. Nichols: Axillary odor: Experimental study of the role of bacteria, apocrine sweat, and deodorants, AMA Arch. Dermatol. Syphilol. 68, 430–446 (1953)CrossRefGoogle Scholar
  125. [125]
    D. Kohoutová, A. Rubešová, J. Havlíček: Shaving of axillary hair has only a transient effect on perceived body odor pleasantness, Behav. Ecol. Sociobiol. 66, 569–581 (2012)CrossRefGoogle Scholar
  126. [126]
    C. Starkenmann, B. Le Calvé, Y. Niclass, I. Cayeux, S. Beccucci, M. Troccaz: Olfactory perception of cysteine-S-conjugates from fruits and vegetables, J. Agric. Food Chem. 56, 9575–9580 (2008)CrossRefGoogle Scholar
  127. [127]
    M.L. Pelchat, C. Bykowski, F.F. Duke, D.R. Reed: Excretion and perception of a characteristic odor in urine after asparagus ingestion: A psychophysical and genetic study, Chem. Senses 836, 9–17 (2010), DOI:10.1093/chemse/bjq081Google Scholar
  128. [128]
    J.A. Mennella, A. Johnson, G.K. Beauchamp: Garlic ingestion by pregnant women alters the odor of amniotic fluid, Chem. Senses 20, 207–209 (1995)CrossRefGoogle Scholar
  129. [129]
    S. Kuukasjärvi, C.J.P. Eriksson, E. Koskela, T. Mappes, K. Nissinen, M.J. Rantala: Attractiveness of women’s body odors over the menstrual cycle: The role of oral contraceptives and receiver sex, Behav. Ecol. 15, 579–584 (2004)CrossRefGoogle Scholar
  130. [130]
    J. Havlíček, R. Dvořáková, L. Bartoš, J. Flegr: Non-advertized does not mean concealed: Body odour changes across the human menstrual cycle, Ethol. 112, 81–90 (2006)CrossRefGoogle Scholar
  131. [131]
    J.N. Lundström, J.A. Boyle, R.J. Zatorre, M. Jones-Gotman: Functional neuronal processing of body odors differs from that of similar common odors, Cerebral Cortex 18, 1466–1474 (2008)CrossRefGoogle Scholar
  132. [132]
    J. Havlicek, S.C. Roberts, J. Flegr: Women’s preference for dominant male odour: Effects of menstrual cycle and relationship status, Biol. Lett. 1, 256–259 (2005)CrossRefGoogle Scholar
  133. [133]
    C. Starkenmann, N. Yvan: Enzyme-and microorganism-guided discovery of natural sulfur compound precursors, Flavour Science: Proc. XIII Weurman Flavour Res. Symp. (2013) p. 307Google Scholar
  134. [134]
    B.M. Pause, A. Ohrt, A. Prehn, R. Ferstl: Positive emotional priming of facial affect perception in females is diminished by chemosensory anxiety signals, Chem. Senses 29, 797–805 (2004)CrossRefGoogle Scholar
  135. [135]
    P. Dalton, C. Mauté, C. Jaén, T. Wilson: Chemosignals of stress influence social judgments, PloS one 8, e77144 (2013)CrossRefGoogle Scholar
  136. [136]
    K. Spiegel, R. Leproult, E. Van Cauter: Impact of sleep debt on metabolic and endocrine function, The Lancet 354, 1435–1439 (1999)CrossRefGoogle Scholar
  137. [137]
    R.L. Doty, P.A. Green, C. Ram, S.L. Yankell: Communication of gender from human breath odors: Relationship to perceived intensity and pleasantness, Horm. Behav. 16, 13–22 (1982)CrossRefGoogle Scholar
  138. [138]
    R.L. Doty, M.M. Orndorff, J. Leyden, A. Kligman: Communication of gender from human axillary odors: Relationship to perceived intensity and hedonicity, Behav. Biol. 23, 373–380 (1978)CrossRefGoogle Scholar
  139. [139]
    R.H. Porter, J.M. Cernoch, F.J. McLaughlin: Maternal recognition of neonates through olfactory cues, Physiol. Behav. 30, 151–154 (1983)CrossRefGoogle Scholar
  140. [140]
    C. Wedekind, S. Füri: Body odour preferences in men and women: Do they aim for specific MHC combinations or simply heterozygosity?, Proc. R. Soc. Lond. Series B: Biol. Sci. 264, 1471–1479 (1997)CrossRefGoogle Scholar
  141. [141]
    C. Wedekind, T. Seebeck, F. Bettens, A.J. Paepke: MHC-dependent mate preferences in humans, Proc. R. Soc. Lond. Series B: Biol. Sci. 260, 245–249 (1995)CrossRefGoogle Scholar
  142. [142]
    S.C. Roberts, L.M. Gosling, V. Carter, M. Petrie: MHC-correlated odour preferences in humans and the use of oral contraceptives, Proc. R. Soc. B: Biol. Sci. 275, 2715–2722 (2008)CrossRefGoogle Scholar
  143. [143]
    A. Rikowski, K. Grammer: Human body odour, symmetry and attractiveness, Proc. R. Soc. Lond. B: Biol. Sci. 266, 869–874 (1999)CrossRefGoogle Scholar
  144. [144]
    D. Singh, P.M. Bronstad: Female body odour is a potential cue to ovulation, Proc. R. Soc. Lond. B: Biol. Sci. 268, 797–801 (2001)CrossRefGoogle Scholar
  145. [145]
    S. Sandgruber, D. Much, U. Amann-Gassner, H. Hauner, A. Buettner: Sensory and molecular characterisation of the protective effect of storage at \(-80^{\circ}\) C on the odour profiles of human milk, Food Chem. 130, 236–242 (2012)CrossRefGoogle Scholar
  146. [146]
    J. Spitzer, A. Buettner: Characterization of aroma changes in human milk during storage at \(-19^{\circ}\) C, Food Chem. 120, 240–246 (2010)CrossRefGoogle Scholar
  147. [147]
    R.J. Zatorre, M. Jones-Gotman, A.C. Evans, E. Meyer: Functional Localization and Lateralization of Human Olfactory Cortex, Nature 360(6402), 339–340 (1992)CrossRefGoogle Scholar
  148. [148]
    J. Seubert, J. Freiherr, J. Djordjevic, J.N. Lundström: Statistical localization of human olfactory cortex, Neuroimage 66, 333–342 (2013)CrossRefGoogle Scholar
  149. [149]
    U. Dimberg, A. Öhman: The effects of directional facial cues on electrodermal conditioning to facial stimuli, Psychophysiol. 20, 160–167 (1983)CrossRefGoogle Scholar
  150. [150]
    J.S. Morris, A. Öhman, R.J. Dolan: A subcortical pathway to the right amygdala mediating unseen fear, Proc. Nat. Aca. Sci. 96, 1680–1685 (1999)CrossRefGoogle Scholar
  151. [151]
    H.T. Schupp, A. Öhman, M. Junghöfer, A.I. Weike, J. Stockburger, A.O. Hamm: The facilitated processing of threatening faces: An ERP analysis, Emotion 4, 189 (2004)CrossRefGoogle Scholar
  152. [152]
    P. Belin, S. Fecteau, C. Bedard: Thinking the voice: Neural correlates of voice perception, Trends in Cognitive Sci. 8, 129–135 (2004)CrossRefGoogle Scholar
  153. [153]
    J.V. Haxby, E.A. Hoffman, M.I. Gobbini: Human neural systems for face recognition and social communication, Biol. Psychiatry 51, 59–67 (2002)CrossRefGoogle Scholar
  154. [154]
    J. Djordjevic, R.J. Zatorre, M. Petrides, J.A. Boyle, M. Jones-Gotman: Functional neuroimaging of odor imagery, Neuroimage 24, 791–801 (2005)CrossRefGoogle Scholar
  155. [155]
    J.A. Gottfried, A.P.R. Smith, M.D. Rugg, R.J. Dolan: Remembrance of odors past: Human olfactory cortex in cross-modal recognition memory, Neuron 42, 687–695 (2004)CrossRefGoogle Scholar
  156. [156]
    J.P. Royet, J. Hudry, D.H. Zald, D. Godinot, M.C. Grégoire, F. Lavenne, N. Costes, A. Holey: Functional neuroanatomy of different olfactory judgments, Neuroimage 13, 506–519 (2001)CrossRefGoogle Scholar
  157. [157]
    J.-P. Royet, O. Koenig, M.-C. Gregoire, L. Cinotti, F. Lavenne, D. Le Bars, N. Costes, M. Vigouroux, V. Farget, G. Sicrd: A. holeey, F. Mauguière, D. Comar, J.C. Fromemt: Functional anatomy of perceptual and semantic processing for odors, J. Cognitive Neurosci. 11, 94–109 (1999)CrossRefGoogle Scholar
  158. [158]
    R.J. Zatorre, M. Jones-Gotman, C. Rouby: Neural mechanisms involved in odor pleasantness and intensity judgments, Neuroreport 11, 2711–2716 (2000)CrossRefGoogle Scholar
  159. [159]
    S. Dilger, T. Straube, H.-J. Mentzel, C. Fitzek, J.R. Reichenbach, H. Hecht, S. Krieschel, I. Gutberlet, W.H. Mittner: Brain activation to phobia-related pictures in spider phobic humans: An event-related functional magnetic resonance imaging study, Neurosci. Lett. 348, 29–32 (2003)CrossRefGoogle Scholar
  160. [160]
    M.L. Seghier: The angular gyrus multiple functions and multiple subdivisions, The Neuroscientist 19, 43–61 (2013)CrossRefGoogle Scholar
  161. [161]
    J. Driver, T. Noesselt: Multisensory interplay reveals crossmodal influences on sensory-specific brain regions, neural responses, and judgments, Neuron 57, 11–23 (2008)CrossRefGoogle Scholar
  162. [162]
    S. Arzy, G. Thut, C. Mohr, C.M. Michel, O. Blanke: Neural basis of embodiment: Distinct contributions of temporoparietal junction and extrastriate body area, J. Neurosci. 26, 8074–8081 (2006)CrossRefGoogle Scholar
  163. [163]
    O. Blanke, C. Mohr, C.M. Michel, A. Pascual-Leone, P. Brugger, M. Seeck, T. Landis, G. Thut: Linking out-of-body experience and self processing to mental own-body imagery at the temporoparietal junction, J. Neurosci. 25, 550–557 (2005)CrossRefGoogle Scholar
  164. [164]
    O. Blanke, T. Landis, L. Spinelli, M. Seeck: Out-of-body experience and autoscopy of neurological origin, Brain 127, 243–258 (2004)CrossRefGoogle Scholar
  165. [165]
    O. Blanke, S. Ortigue, T. Landis, M. Seeck: Neuropsychology: Stimulating illusory own-body perceptions, Nature 419, 269–270 (2002)CrossRefGoogle Scholar
  166. [166]
    R. Desimone, J. Duncan: Neural mechanisms of selective visual attention, Annual Rev. Neurosci. 18, 193–222 (1995)CrossRefGoogle Scholar
  167. [167]
    C.N.L. Olivers, J. Peters, R. Houtkamp, P.R. Roelfsema: Different states in visual working memory: When it guides attention and when it does not, Trends in Cognitive Sci. 15, 327–334 (2011)Google Scholar
  168. [168]
    S.M. Polyn, K.A. Norman, M.J. Kahana: A context maintenance and retrieval model of organizational processes in free recall, Psychol. Rev. 116, 129 (2009)CrossRefGoogle Scholar
  169. [169]
    M. Johns, M. Inzlicht, T. Schmader: Stereotype threat and executive resource depletion: Examining the influence of emotion regulation, J. Exp. Psychol.: Gen. 137, 691 (2008)CrossRefGoogle Scholar
  170. [170]
    S.M. McClure, M.M. Botvinick, N. Yeung, J.D. Greene, J.D. Cohen: Conflict monitoring in cognition-emotion competition. In: Handbook of Emotion Regulation, ed. by J.J. Gross (Taylor Francis, New York 2007) pp. 204–226Google Scholar
  171. [171]
    M.A. Cato, B. Crosson, D. Gökçay, D. Soltysik, C. Wierenga, K. Gopinath, N. Hime, H. Belanger, R.M. Baner, I.S. Fischler, L. Gonzales-Rothi, R.W. Briggs: Processing words with emotional connotation: An FMRI study of time course and laterality in rostral frontal and retrosplenial cortices, J. Cognitive Neurosci. 16, 167–177 (2004)CrossRefGoogle Scholar
  172. [172]
    S.D. Vann, J.P. Aggleton, E.A. Maguire: What does the retrosplenial cortex do?, Nature Rev. Neurosci. 10, 792–802 (2009)CrossRefGoogle Scholar
  173. [173]
    L. van der Meer, S. Costafreda, A. Aleman, A.S. David: Self-reflection and the brain: A theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia, Neurosci. Biobehav. Rev. 34, 935–946 (2010)CrossRefGoogle Scholar
  174. [174]
    G. Northoff, A. Heinzel, M. de Greck, F. Bermpohl, H. Dobrowolny, J. Panksepp: Self-referential processing in our brain – A meta-analysis of imaging studies on the self, Neuroimage 31, 440–457 (2006)CrossRefGoogle Scholar
  175. [175]
    B.S. McEwen: Physiology and neurobiology of stress and adaptation: Central role of the brain, Physiol. Rev. 87, 873–904 (2007)CrossRefGoogle Scholar
  176. [176]
    H. Selye: The stress concept, Can. Med. Assoc. J. 115, 718 (1976)Google Scholar
  177. [177]
    M. Dicke, R.M.P. van Poecke, J.G. de Boer: Inducible indirect defence of plants: From mechanisms to ecological functions, Basic and Appl, Ecology 4, 27–42 (2003)Google Scholar
  178. [178]
    J.M. Mateo, R.E. Johnston: Kin recognition and the armpit effect: Evidence of self-referent phenotype matching, Proc. R. Soc. Lond. Series B: Biol. Sci. 267, 695–700 (2000)CrossRefGoogle Scholar
  179. [179]
    T. Lord, M. Kasprzak: Identification of self through olfaction, Percept. motor skills 69, 219–224 (1989)CrossRefGoogle Scholar
  180. [180]
    B.M. Pause, K. Krauel, B. Sojka, R. Ferstl: Body odor evoked potentials: A new method to study the chemosensory perception of self and non-self in humans, Genetica 104, 285–294 (1998)CrossRefGoogle Scholar
  181. [181]
    R.M. Sullivan: Developing a sense of safety, Annals N. Y. Academy Sci. 1008, 122–131 (2003)CrossRefGoogle Scholar
  182. [182]
    J. Bowlby: Attachment and Loss, Volume I: Attachment (Basic Books, New York 1969)Google Scholar
  183. [183]
    M.S. Ainsworth: Infant–mother attachment, Am. Psycholog. 34, 932 (1979)CrossRefGoogle Scholar
  184. [184]
    M. Kaitz, A. Good, A.M. Rokem, A.I. Eidelman: Mothers’ recognition of their newborns by olfactory cues, Dev. Psychobiol. 20, 587–591 (1987)CrossRefGoogle Scholar
  185. [185]
    M.J. Russell, T. Mendelson, H.V.S. Peek: Mother’s identification of their infant’s odors, Ethol. Sociobiol. 4, 29–31 (1983)CrossRefGoogle Scholar
  186. [186]
    H. Selye: Stress in Health and Disease (Butterworth-Heinemann, Boston 1976)Google Scholar
  187. [187]
    K. Ackerl, M. Atzmueller, K. Grammer: The scent of fear, Neuroendocrinol. Lett. 23, 79–84 (2002)Google Scholar
  188. [188]
    B.M. Pause, K. Lübke, J.H. Laudien, R. Ferstl: Intensified neuronal investment in the processing of chemosensory anxiety signals in non-socially anxious and socially anxious individuals, PloS one 5, e10342 (2010)CrossRefGoogle Scholar
  189. [189]
    A. Öhman, S. Mineka: Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning, Psychol. Rev. 108, 483 (2001)CrossRefGoogle Scholar
  190. [190]
    J. Tooby, L. Cosmides: The past explains the present: Emotional adaptations and the structure of ancestral environments, Ethol. Sociobiol. 11, 375–424 (1990)CrossRefGoogle Scholar
  191. [191]
    W.K. Berg, M.T. Balaban: Startle elicitation: Stimulus parameters, recording techniques, and quantification. In: Startle Modification: Implications for Neuroscience, Cognitive Science, and Clinical Science, (Cambridge Univ. Press, New York 1999) pp. 21–50CrossRefGoogle Scholar
  192. [192]
    L. Alho, S.C. Soares, J. Ferreira, M. Rocha, C.F. Silva, M.J. Olsson: Nosewitness identification: Effects of negative emotion, PloS one 10(3), e0121012 (2015)CrossRefGoogle Scholar
  193. [193]
    S. Mineka, A. Öhman: Phobias and preparedness: The selective, automatic, and encapsulated nature of fear, Biol. Psychiatry 52, 927–937 (2002)CrossRefGoogle Scholar
  194. [194]
    A. Flykt: Preparedness for action: Responding to the snake in the grass, Am. J. Psychol. 119(1), 29–43 (2006)CrossRefGoogle Scholar
  195. [195]
    A. Öhman, A. Flykt, F. Esteves: Emotion drives attention: Detecting the snake in the grass, J. Experiment. Psychol.: Gen. 130, 466 (2001)CrossRefGoogle Scholar
  196. [196]
    D.R. Bach, H. Schächinger, J.G. Neuhoff, F. Esposito, F. Di Salle, C. Lehmann, M. Herdener, K. Scheffler, E. Seifritz: Rising sound intensity: An intrinsic warning cue activating the amygdala, Cerebral Cortex 18, 145–150 (2008)CrossRefGoogle Scholar
  197. [197]
    J.H.B. De Groot, G.R. Semin, M.A.M. Smeets: I can see, hear, and smell your fear: Comparing olfactory and audiovisual media in fear communication, J. Experiment. Psychol.: Gen. 143, 825 (2014)CrossRefGoogle Scholar
  198. [198]
    J.M. Susskind, D.H. Lee, A. Cusi, R. Feiman, W. Grabski, A.K. Anderson: Expressing fear enhances sensory acquisition, Nature Neurosci. 11, 843–850 (2008)CrossRefGoogle Scholar
  199. [199]
    E. Hatfield, J.T. Cacioppo, R.L. Rapson: Emotional Contagion: Studies in Emotion and Social Interaction (Cambridge Univ. Press, New York 1994)Google Scholar
  200. [200]
    D. Keltner, A.M. Kring: Emotion, social function, and psychopathology, Rev. Gen. Psycholo. 2, 320 (1998)CrossRefGoogle Scholar
  201. [201]
    L. Sartori, S. Betti, U. Castiello: When mirroring is not enough: That is, when only a complementary action will do (the trick), Neuroreport 24, 601–604 (2013)CrossRefGoogle Scholar
  202. [202]
    T. Singer, C. Lamm: The social neuroscience of empathy, Annals N. Y. Acad. Sci. 1156, 81–96 (2009)CrossRefGoogle Scholar
  203. [203]
    U. Dimberg: Facial expressions as excitatory and inhibitory stimuli for conditioned autonomic responses, Biol. Psychol. 22, 37–57 (1986)CrossRefGoogle Scholar
  204. [204]
    M.M. Strauss, N. Makris, I. Aharon, M.G. Vangel, J. Goodman, D.N. Kennedy, G.P. Gasic, H.C. Brieter: fMRI of sensitization to angry faces, Neuroimage 26, 389–413 (2005)Google Scholar
  205. [205]
    N.H. Frijda: The Emotions (Cambridge Univ. Press, Cambridge 1986)Google Scholar
  206. [206]
    D. Adolph, S. Schlösser, M. Hawighorst, B.M. Pause: Chemosensory signals of competition increase the skin conductance response in humans, Physiol. Behav. 101, 666–671 (2010)CrossRefGoogle Scholar
  207. [207]
    B.M. Pause, K. Krauel, C. Schrader, B. Sojka, E. Westphal, W. Müller-Ruchholtz, R. Ferstl: The human brain is a detector of chemosensorily transmitted HLA-class I-similarity in same-and opposite-sex relations, Proc. R. Soc. B: Biol. Sci. 273, 471–478 (2006)CrossRefGoogle Scholar
  208. [208]
    S.T. Carmichael, M.C. Clugnet, J.L. Price: Central olfactory connections in the macaque monkey, J. Comparat. Neurol. 346, 403–434 (1994)CrossRefGoogle Scholar
  209. [209]
    K. McAlonan, J. Cavanaugh, R.H. Wurtz: Guarding the gateway to cortex with attention in visual thalamus, Nature 456, 391–394 (2008)CrossRefGoogle Scholar
  210. [210]
    J. Plailly, J.D. Howard, D.R. Gitelman, J.A. Gottfried: Attention to odor modulates thalamocortical connectivity in the human brain, J. Neurosci. 28, 5257–5267 (2008)CrossRefGoogle Scholar
  211. [211]
    J.N. Lundström, A. Mathe, B. Schaal, J. Frasnelli, K. Nitzsche, J. Gerber, T. Hummel: Maternal status regulates cortical responses to the body odor of newborns, Front. Psychol. 4, 597 (2013)CrossRefGoogle Scholar
  212. [212]
    S. Nishitani, S. Kuwamoto, A. Takahira, T. Miyamura, K. Shinohara: Maternal prefrontal cortex activation by newborn infant odors, Chem. Senses 39, 195–202 (2014)CrossRefGoogle Scholar
  213. [213]
    C. Darwin: The Expression of Emotions in Animals and Man (Murray, London 1872)CrossRefGoogle Scholar
  214. [214]
    B. Schaal, L. Marlier: Maternal and paternal perception of individual odor signatures in human amniotic fluid–potential role in early bonding?, Biol. Neonate 74, 266–273 (1998)CrossRefGoogle Scholar
  215. [215]
    J. LeDoux: Rethinking the emotional brain, Neuron 73, 653–676 (2012)CrossRefGoogle Scholar
  216. [216]
    N.J. Shah, J.C. Marshall, O. Zafiris, A. Schwab, K. Zilles, H.J. Markowitsch, G.R. Fink: The neural correlates of person familiarity A functional magnetic resonance imaging study with clinical implications, Brain 124, 804–815 (2001)CrossRefGoogle Scholar
  217. [217]
    P.E. Downing, Y. Jiang, M. Shuman, N. Kanwisher: A cortical area selective for visual processing of the human body, Science 293, 2470–2473 (2001)CrossRefGoogle Scholar
  218. [218]
    M. Fiorio, P. Haggard: Viewing the body prepares the brain for touch: Effects of TMS over somatosensory cortex, Eur. J. Neurosci. 22, 773–777 (2005)CrossRefGoogle Scholar
  219. [219]
    J.S. Morris, A. Öhman, R.J. Dolan: Conscious and unconscious emotional learning in the human amygdala, Nature 393, 467–470 (1998)CrossRefGoogle Scholar
  220. [220]
    P.J. Whalen, S.L. Rauch, N.L. Etcoff, S.C. McInerney, M.B. Lee, M.A. Jenike: Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge, J. Neurosci. 18, 411–418 (1998)Google Scholar
  221. [221]
    H. Yamasaki, K.S. LaBar, G. McCarthy: Dissociable prefrontal brain systems for attention and emotion, Proc. Nat. Aca. Sci. 99, 11447–11451 (2002)CrossRefGoogle Scholar
  222. [222]
    A.J. Calder, A.D. Lawrence, A.W. Young: Neuropsychology of fear and loathing, Nature Rev, Neurosci 2, 352–363 (2001)Google Scholar
  223. [223]
    B. Wicker, C. Keysers, J. Plailly, J.-P. Royet, V. Gallese, G. Rizzolatti: Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust, Neuron 40, 655–664 (2003)CrossRefGoogle Scholar
  224. [224]
    V. Baur, J. Hänggi, N. Langer, L. Jäncke: Resting-state functional and structural connectivity within an insula – Amygdala route specifically index state and trait anxiety, Biol. Psychiatry 73, 85–92 (2013)CrossRefGoogle Scholar
  225. [225]
    P.J. Lang, M. Davis: Emotion, motivation, and the brain: Reflex foundations in animal and human research, Prog. brain res. 156, 3–29 (2006)CrossRefGoogle Scholar
  226. [226]
    F. Bonini, B. Burle, C. Liégeois-Chauvel, J. Régis, P. Chauvel, F. Vidal: Action monitoring and medial frontal cortex: Leading role of supplementary motor area, Sci. 343, 888–891 (2014)CrossRefGoogle Scholar
  227. [227]
    A.M. Proverbio, A. Zani, R. Adorni: Neural markers of a greater female responsiveness to social stimuli, BMC Neurosci. 9, 56 (2008)CrossRefGoogle Scholar
  228. [228]
    W. Li, J.D. Howard, T.B. Parrish, J.A. Gottfried: Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues, Sci. 319, 1842–1845 (2008)CrossRefGoogle Scholar
  229. [229]
    D. Adolph, L. Meister, B.M. Pause: Context counts!, social anxiety modulates the processing of fearful faces in the context of chemosensory anxiety signals, Front. Human Neurosci. 7, 283 (2013)CrossRefGoogle Scholar
  230. [230]
    J.E. LeDoux: Coming to terms with fear, Proc. Natl. Acad. Sci. 111, 2871–2878 (2014)CrossRefGoogle Scholar
  231. [231]
    D. Sander, J. Grafman, T. Zalla: The human amygdala: An evolved system for relevance detection, Revi. Neurosci. 14, 303–316 (2003)Google Scholar
  232. [232]
    A. Vyas, S.-K. Kim, N. Giacomini, J.C. Boothroyd, R.M. Sapolsky: Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors, Proc. Natl. Acad. Sci. 104 6442–6447 (2007) Google Scholar
  233. [233]
    A.R. Radulescu, L.R. Mujica-Parodi: Human gender differences in the perception of conspecific alarm chemosensory cues, PLoS one 8, e68485 (2013)CrossRefGoogle Scholar
  234. [234]
    S. Wetter, J. Polich, C. Murphy: Olfactory, auditory, and visual ERPs from single trials: No evidence for habituation, Int. J. Psychophysiol. 54, 263–272 (2004)CrossRefGoogle Scholar
  235. [235]
    J.K. Olofsson, E. Ericsson, S. Nordin: Comparison of chemosensory, auditory and visual event-related potential amplitudes, Scand. J. Psychol. 49, 231–237 (2008)CrossRefGoogle Scholar
  236. [236]
    B.M. Pause, K. Krauel: Chemosensory event-related potentials (CSERP) as a key to the psychology of odors, Int. J. Psychophysiol. 36, 105–122 (2000)CrossRefGoogle Scholar
  237. [237]
    A. Poellinger, R. Thomas, P. Lio, A. Lee, N. Makris, B.R. Rosen, K.K. Kwong: Activation and habituation in olfaction—an fMRI study, Neuroimage 13, 547–560 (2001)CrossRefGoogle Scholar
  238. [238]
    D.A. Wilson: Odor specificity of habituation in the rat anterior piriform cortex, J. Neurophysiol. 83, 139–145 (2000)Google Scholar
  239. [239]
    R.A. Cohen, R.F. Kaplan, M.-E. Meadows, H. Wilkinson: Habituation and sensitization of the orienting response following bilateral anterior cingulotomy, Neuropsychol 32, 609–617 (1994)CrossRefGoogle Scholar
  240. [240]
    D.P. Kennedy, R. Adolphs: The social brain in psychiatric and neurological disorders, Trends in Cognitive Sci. 16, 559–572 (2012)CrossRefGoogle Scholar
  241. [241]
    K.T. Lübke, I. Croy, M. Hoenen, J. Gerber, B.M. Pause, T. Hummel: Does human body odor represent a significant and rewarding social signal to individuals high in social openness?, PloS one 9, e94314 (2014)CrossRefGoogle Scholar
  242. [242]
    American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) edn. (ManMag, Arlington 2003)Google Scholar
  243. [243]
    V. Parma, M. Bulgheroni, R. Tirindelli, U. Castiello: Facilitation of action planning in children with autism: The contribution of the maternal body odor, Brain and Cognition 88, 73–82 (2014)CrossRefGoogle Scholar
  244. [244]
    V. Parma, M. Bulgheroni, R. Tirindelli, U. Castiello: Body odors promote automatic imitation in autism, Biol. Psychiatry 74, 220–226 (2013)CrossRefGoogle Scholar
  245. [245]
    B.M. Pause, D. Adolph, A. Prehn-Kristensen, R. Ferstl: Startle response potentiation to chemosensory anxiety signals in socially anxious individuals, Int. J. Psychophysiol. 74, 88–92 (2009)CrossRefGoogle Scholar
  246. [246]
    K. Kobayakawa, R. Kobayakawa, H. Matsumoto, Y. Oka, T. Imai, M. Ikawa, M. Okabe, T. Ikeda, S. Itohara, T. Kikusi, U. Mori, H. Sakano: Innate versus learned odour processing in the mouse olfactory bulb, Nature 450, 503–508 (2007)CrossRefGoogle Scholar
  247. [247]
    R.I.M. Dunbar, S. Shultz: Evolution in the social brain, Sci. 317, 1344–1347 (2007)CrossRefGoogle Scholar
  248. [248]
    C.J. Wysocki, G. Preti: Facts, fallacies, fears, and frustrations with human pheromones, The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary, Biol 281, 1201–1211 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Monell Chemical Senses CenterPhiladelphiaUSA
  2. 2.Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
  3. 3.Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden

Personalised recommendations