Determining the Real Capacity of a Desktop Cloud

  • Carlos E. GómezEmail author
  • César O. Díaz
  • César A. Forero
  • Eduardo Rosales
  • Harold Castro
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 565)


Computer laboratories at Universities are underutilized most of the time [1]. Having an averaged measure of its computing resources usage would allow researchers to harvest the capacity available by deploying opportunistic infrastructures, that is, infrastructures mostly supported by idle computing resources which run in parallel to tasks performed by the resource owner (end-user). In this paper we measure such usage in terms of CPU and RAM. The metrics were obtained by using the SIGAR library on 70 desktops belonging to two independent laboratories during the three busiest weeks in the semester. We found that the averaged usage of CPU is less than 5 % while RAM is around 25 %. The results show that in terms of the amount of floating point operations per second (FLOPS) there is a capacity of 24 GFLOPS that can be effectively harvest by deploying opportunistic infrastructures to support e-Science without affecting the performance perceived by end-users and avoiding underutilization and the acquisition of new hardware.


Virtual Machine Physical Machine Desktop Grid Monitoring Component Idle Resource 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Domingues, P., Marques, P., Silva, L.: Resource usage of Windows computer laboratories. In: International Conference Workshops on Parallel Processing, ICPP 2005 Workshops, pp. 469–476 (2005)Google Scholar
  2. 2.
    Rosales, E., Castro, H., Villamizar, M.: UnaCloud: opportunistic cloud computing infrastructure as a service. In: CLOUD COMPUTING 2011: the Second International Conference on Cloud Computing, GRIDs, and Virtualization, Rome, Italy (2011)Google Scholar
  3. 3.
    Oviedo, A.: UnaCloud MSA: Plataforma basada en UnaCloud para la generación y análisis de alineamientos múltiples de secuencias. Magister en Ingeneiría, Systems and Computing Engineering, Universidad de Los Andes (2011)Google Scholar
  4. 4.
    Sotelo, G., Rosales, E., Castro, H.: Implications of CPU dynamic performance and energy-efficient technologies on the intrusiveness generated by desktop grids based on virtualization. In: Hernández, G., Barrios Hernández, C.J., Díaz, G., García Garino, C., Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez, M. (eds.) CARLA 2014. CCIS, vol. 485, pp. 98–112. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Morgan, R.: SIGAR -System Information Gatherer And Reporter (2010).
  6. 6.
    Jack, D., Reed, W., Paul, M.: Linpack Benchmark – Java Version (2015).
  7. 7.
    Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: Fifth IEEE/ACM International Workshop on Grid Computing, Proceedings, pp. 4–10 (2004)Google Scholar
  8. 8.
    U. o. California. SETI@home (2015).
  9. 9.
  10. 10.
    OurGrid (2013).
  11. 11.
  12. 12.
    CernVM Project (2015).
  13. 13.
    Marosi, A., Kovács, J., Kacsuk, P.: Towards a volunteer cloud system. Future Gener. Comput. Syst. 29, 1442–1451 (2013)CrossRefGoogle Scholar
  14. 14.
    Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hardware/Software Interface, 5th edn. Morgan and Kaufmann, Burlington (2014)zbMATHGoogle Scholar
  15. 15.
    Fernandez, M.: Nodes, Sockets, Cores and FLOPS, Oh, My.
  16. 16.
    BOINC. Detailed stats SETI@Home (2015).
  17. 17.
    Aceto, G., Botta, A., de Donato, W., Pescapè, A.: Cloud monitoring: a survey. Comput. Netw. 57, 2093–2115 (2013)CrossRefGoogle Scholar
  18. 18.
    Aceto, G., Botta, A., de Donato, W., Pescape, A.: Cloud monitoring: definitions, issues and future directions. In: 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET), pp. 63–67 (2012)Google Scholar
  19. 19.
    Ahmadi, M.R., Maleki, D.: Performance evaluation of server virtualization in data center applications. In: 2010 5th International Symposium on Telecommunications (IST), pp. 638–644 (2010)Google Scholar
  20. 20.
    Intel Corporation: First the tick, now the tock: Next generation Intel microarchitecture (Nehalem) (2009)Google Scholar
  21. 21.
    Intel Corporation: Intel Turbo Boost Technology in Intel Core Microarchitecture (Nehalem) Based ProcessorsGoogle Scholar
  22. 22.
    Intel Corporation: Enhanced Intel SpeedStep® Technology - How To Document, 10 April 2015Google Scholar
  23. 23.
    Kondo, D., Fedak, G., Cappello, F., Chien, A.A., Casanova, H.: Characterizing resource availability in enterprise desktop grids. Future Gener. Comput. Syst. 23, 888–903 (2007)CrossRefGoogle Scholar
  24. 24.
    Mutka, M.W.: An examination of strategies for estimating capacity to share among private workstations. In: Presented at the Proceedings of the 1991 ACM SIGSMALL/PC Symposium on Small Systems, Toronto, Ontario, Canada (1991)Google Scholar
  25. 25.
    Yaik, O.B., Chan Huah, Y., Haron, F.: CPU usage pattern discovery using suffix tree. In: The 2nd International Conference on Distributed Frameworks for Multimedia Applications, pp. 1–8 (2006)Google Scholar
  26. 26.
    Shafazand, M., Latip, R., Abdullah, A., Hussin, M.: A model for client recommendation to a desktop grid server. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), vol. 285, pp. 491–498. Springer, Singapore (2014)Google Scholar
  27. 27.
    Gan Chee, T., Ooi Boon, Y., Liew Soung, Y.: Workstations uptime analysis framework to identify opportunity for forming ad-hoc computer clusters. In: 2014 International Conference on Computer, Communications, and Control Technology (I4CT), pp. 234–238 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carlos E. Gómez
    • 1
    • 2
    Email author
  • César O. Díaz
    • 1
  • César A. Forero
    • 1
  • Eduardo Rosales
    • 1
  • Harold Castro
    • 1
  1. 1.Systems and Computing Engineering Department, School of EngineeringUniversidad de Los AndesBogotáColombia
  2. 2.Universidad del QuindíoArmeniaColombia

Personalised recommendations